Для решения данной задачи определим понятие "Давление". Давление есть сила, действующая на единицу площади поверхности перпендикулярно этой поверхности. Запишем P = m*a / S . Здесь P - давление, m - масса куба, a - ускорение, S - площадь, на которую куб воздействует. В случае, если лифт стоит на месте или прямолинейно и равномерно движется, то a = g = 9,8 м/с2 , где g - гравитационная постоянная.
В нашем же случае, когда лифт ускоряется a = g + 1 = 10.8 м/с2, а когда замедляется a = g - 1 = 8,8 м/с2.
S легко найти, т.к. нам известен размер ребра куба L = 20 см = 0.2 м. Итак, S = 0.2 * 0.2 = 0.04 м2
Осталось найти массу куба. Как известно масса равна произведению объёма на плотность материала: m = V * p
Объём куба равен размеру его грани в кубе, т.е. V = 0.2 * 0.2 * 0.2 = 0.008 м3.
Вычислим массу куба: m = V * p = 0.008 * 2300 = 18.4 кг
Теперь мы знаем все параметры и можем вычислить давление куба на пол:
При ускорении лифта: P = m * (g + 1) / S = 18.4 * 10.8 / 0.04 = 4968 Па
При замедлении лифта: P = m * (g - 1) / S = 18.4 * 8.8 / 0.04 = 4048 Па
Вынужденные колебания возникают в системе под действием внешней периодической ЭДС. Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими. Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий. Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы. Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий. В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС. При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы. Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону. При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний. Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания. При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы. При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем. При наличии активного сопротивления, амплитуда колебаний остается конечной величиной. При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы. Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.
В нашем же случае, когда лифт ускоряется a = g + 1 = 10.8 м/с2, а когда замедляется a = g - 1 = 8,8 м/с2.
S легко найти, т.к. нам известен размер ребра куба L = 20 см = 0.2 м.
Итак, S = 0.2 * 0.2 = 0.04 м2
Осталось найти массу куба. Как известно масса равна произведению объёма на плотность материала:
m = V * p
Объём куба равен размеру его грани в кубе, т.е. V = 0.2 * 0.2 * 0.2 = 0.008 м3.
Вычислим массу куба:
m = V * p = 0.008 * 2300 = 18.4 кг
Теперь мы знаем все параметры и можем вычислить давление куба на пол:
При ускорении лифта:
P = m * (g + 1) / S = 18.4 * 10.8 / 0.04 = 4968 Па
При замедлении лифта:
P = m * (g - 1) / S = 18.4 * 8.8 / 0.04 = 4048 Па
Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими.
Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий.
Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы.
Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий.
В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС.
При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы.
Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону.
При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний.
Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания.
При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы.
При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем.
При наличии активного сопротивления, амплитуда колебаний остается конечной величиной.
При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы.
Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.