Проводящая плоскость площадью 200см^2 несёт на себе равномерно распределенный электрический заряд 0,20 мккл. с какой силой будут притягиваться две такие плоскости расположенные паралельно друг другу, если заряды на них будут иметь противоположные знаки?
ОТВЕТ
1) E ф=A вых +E кин где E-энергия фотона A -работа выхода E-кинетическая энергия
Е ф= h*v где h-постоянная Планка (6.63*10^-34) v - частота света
h*v= Aвых + Eкин
Авых для меди = 4.36 эВ= 6.9*10^-19 Дж =>
Eф= 6.63*10^-34 * 6 • 10^16 = 39.8*10^-18 Дж=398*10^-19
Екин=Еф-Авых= (398-6.9)*10^-19 Дж =391*10^-19 Дж
2) формула та же. только Еф=h*c / L где с-скорость света в ваакуме(3*10^8м/с) L-длина волны света
Екин=mV^2 /2 где m - масса покоющегося электрона(9.1 *10^-31 кг)
0,28*10^6м\c = 28*10^4 м\с
h*c / L=Aвых + mV^2 /2 => Aвых=h*c / L - mV^2 /2
h*c / L = 6.63*10^-34 * 3*10^8 / 590*10^-9 = 3.4*10^-19 Дж
mV^2 /2= 9.1 *10^-31 * 784*10^8 / 2=3567*10^-23 Дж=0.35*10^-19 Дж
Авых = (3.4 - 0.35)*10^-19 = 3.05*10^-19 Дж
Vср = S / t.
Рассмотрим первую половину пути:
S₁ = (S/2)
t₁ = S₁/V₁ = S / (2*V₁) = S / 20 = (1/20)*S = 0,05*S ч
Рассмотрим вторую половину пути.
Оставшийся путь
S₂ = (S/2)
Оставшееся время t₂ разобьем на 3 равных промежутка по (t₂ /3) часа
Путь на первой трети остатка:
S₂₁ = V₂₁*(t₂/3) = (20/3)*t₂
Путь на второй трети остатка:
S₂₂ = 0 (ремонт!)
Путь на последней трети остатка:
S₂₃ = V₂₃*(t₂/3) = (5/3)*t₂
Собираем
S₂ = S₂₁+S₂₂+S₂₃ = (20/3)*t₂ + 0 + (5/3)*t₂ = (25/3)*t₂
(S/2) = (25/3)*t₂
t₂ = (3/50)*S = 0,06*S ч
Общее время:
t = t₁ +t₂ = 0,05*S + 0,06*S = 0,11*S
Средняя скорость:
Vcp = S / (0,11*S) = 1 / 0,11 ≈ 9 км/ч