Найдем объем, а затем и массу груза:V=п*R^2*h=3,14*0,05^2*0,15=0,0011775 м^3; Отсюда масса = ρV=9,42 кг; Период колебаний пружинного маятника = 2п√(m/k), где k - коэффициент жесткости. T=1,3629188 с. Находим 3% от T=0,03T=1,3220313; Теперь находим объем отверстия: V=3,14*(0,015)^2*h, где h - искомая глубина. Раз мы просверлили отверстие, то, естественно, масса груза должна уменьшится. Находим изменение объема: ΔV=0,0011775-3,14*(0,015)^2*h; Чтоб h не участвовало в умножении, выносим за скобку 3,14*(0,015)^2=0,0007065. Если мы поделим последнее число на первоначальный объем груза, то увидим, что последний ровно в 5/3 раз больше нынешнего объема(не учитывая h). В итоге: 2п√((0,0007065(5/3--h)*8000)/200 Н/м) = 2п√(0,0007065(5/3-h)*40) Приравниваем те самые 3 % от T к 2п√(0,0007065(5/3-h)*40): 1,3220313=2п√(0,0007065(5/3-h)*40) 0,2105145=√(0,0007065(5/3-h)*40) Избавляемся от корня: (0,2105145)^2=(0,0007065*(5/3-h)*40) 0,0443163=0,02826(5/3-h) 5/3-h=1,5681634 h=0,0985 м 0,0985 м = 9,85 см ответ:(г)9,85 см PS: извини, что размерности не писал, а то лень. Напиши сам.
Нам задавали в феврале сделать черенкование растений, могу подсказать как я сделала одно из растений. там было , например бегонию начать черенковать, записывая: дату начала черенкования, дату появления первого корня, дату появления корня длинной 1,5 - 2 см и дата посадки растения в почву. и вот что у меня получилось: бегония - 14 февраля (начало черенкования) , 23 февраля (дата появления первого корня) , 27 февраля (дата появления корня длинной 1,5 - 2 см) , 27 февраля (дата посадки растения в почву) . то есть, после начала черенкования растения, первый корень появляется через 9 дней, корень длинной 1,5 - 2 см появляется через 13 дней после начала черенкования (и через 4 дня после появления первого корня) , и сразу же после появления корня длинной 1,5 - 2 см - можно сажать растение в почву. * - черенкование или размножение черенками является одним из распространенных методов вегетативного размножения.
Теперь находим объем отверстия: V=3,14*(0,015)^2*h, где h - искомая глубина. Раз мы просверлили отверстие, то, естественно, масса груза должна уменьшится. Находим изменение объема: ΔV=0,0011775-3,14*(0,015)^2*h; Чтоб h не участвовало в умножении, выносим за скобку 3,14*(0,015)^2=0,0007065. Если мы поделим последнее число на первоначальный объем груза, то увидим, что последний ровно в 5/3 раз больше нынешнего объема(не учитывая h). В итоге: 2п√((0,0007065(5/3--h)*8000)/200 Н/м) = 2п√(0,0007065(5/3-h)*40)
Приравниваем те самые 3 % от T к 2п√(0,0007065(5/3-h)*40):
1,3220313=2п√(0,0007065(5/3-h)*40)
0,2105145=√(0,0007065(5/3-h)*40)
Избавляемся от корня:
(0,2105145)^2=(0,0007065*(5/3-h)*40)
0,0443163=0,02826(5/3-h)
5/3-h=1,5681634
h=0,0985 м
0,0985 м = 9,85 см
ответ:(г)9,85 см
PS: извини, что размерности не писал, а то лень. Напиши сам.