Сколько теплоты потребуется для плавления 10кг железа,взятого при температуре 30°с. изобразите на графике изменения состояния железа. не просто ответ,а распишите
Равномерное движение по окружности характеризуют периодом и частотой обращения. Период обращения - это время, за которое совершается один оборот. Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле: Период и частота обращения Итак, чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов. Другой характеристикой равномерного движения по окружности является частота обращения. Частота обращения - это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле: Период и частота обращения Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли. За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли "оборот в секунду", но теперь это название считается устаревшим. Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота - величины взаимно обратные. Поэтому Период и частота обращения Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения V. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела V и радиус окружности r, по которой оно движется.
Для вывода новой формулы вспомним, что период обращения - это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2 Пr, где П≈3,14- число "пи", известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом, Период и частота обращения Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.
сводится к умению использовать закон сохранения импульса.
так как скорость v1 большего осколка перпендикулярна начальной скорости vo снаряда, импульсы снаряда po и двух осколков, p1 и p2 образуют прямоугольный треугольник, двумя катетами которого есть импульсы po, p1, а гипотенузой - импульс p2. тогда закон сохранения импульса при проекции можно записать как теорему пифагора:
p2² = p1² + p0². (1)
принимая, что масса меньшего осколка равна m1, а большего - m2 = m - m1, выражение (1), использовав выражение для величины импульса, p = m*v, можно переписать:
m1²*(5*v)² < =>
25*m1²*v² = m²*v² + (m - m1)²*v². (2)
после сокращения (2) на v²:
25*m1² = m² + m² - 2*m*m1 + m1².
решая квадратичное уравнение, можно получить удовлетворяющее условию m1> 0 значение массы малого осколка
Период обращения - это время, за которое совершается один оборот.
Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле:
Период и частота обращения
Итак, чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов.
Другой характеристикой равномерного движения по окружности является частота обращения.
Частота обращения - это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле:
Период и частота обращения
Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.
За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли "оборот в секунду", но теперь это название считается устаревшим.
Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота - величины взаимно обратные. Поэтому
Период и частота обращения
Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения V. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела V и радиус окружности r, по которой оно движется.
Для вывода новой формулы вспомним, что период обращения - это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2 Пr, где П≈3,14- число "пи", известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,
Период и частота обращения
Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.
объяснение:
сводится к умению использовать закон сохранения импульса.
так как скорость v1 большего осколка перпендикулярна начальной скорости vo снаряда, импульсы снаряда po и двух осколков, p1 и p2 образуют прямоугольный треугольник, двумя катетами которого есть импульсы po, p1, а гипотенузой - импульс p2. тогда закон сохранения импульса при проекции можно записать как теорему пифагора:
p2² = p1² + p0². (1)
принимая, что масса меньшего осколка равна m1, а большего - m2 = m - m1, выражение (1), использовав выражение для величины импульса, p = m*v, можно переписать:
m1²*(5*v)² < =>
25*m1²*v² = m²*v² + (m - m1)²*v². (2)
после сокращения (2) на v²:
25*m1² = m² + m² - 2*m*m1 + m1².
решая квадратичное уравнение, можно получить удовлетворяющее условию m1> 0 значение массы малого осколка
m1 = (-m + 7m)/24 = m/4.
тогда
m2/m1 = (m - m1)/m1 = 3.