Теперь уже можно кое-что рассказать и о явлении сверхпроводимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равномерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то , что делают другие, ибо все бозе-частицы стремятся попасть в одинаковое состояние. Ток , если уж он пошел, то это навеки.
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле ( что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток , который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток , чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверхпроводником ), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток , и как раз в таком количестве, чтобы вытолкнуть поле наружу.
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть равен нулю. Но погодите, а как же с вариацией r? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать r постоянным. Далее, единственная возможность, чтобы Ñ2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом.
Очевидно, что равнодействующая всех сил равна произведению массы на ускорение: F1=(100000+50000*2)*0.5=100000 Ньютонов, или 100 кН.
Теперь найдем силу трения. Так как тело движется горизонтально, сила реакции опоры N будет равна весу тела m*g. Таким образом, зная, что сила трения равна произведению силы реакции опоры на коэффициент трения-скольжения, мы найдем, что F2=200000*10*0.006=12000 Ньютонов, или 12 кН.
Теперь, знаю равнодействующую силу и силу трения, мы с легкостью найдем силу тяги - Fтяги=F1+F2=112 кН=112000 Ньютонов
Теперь уже можно кое-что рассказать и о явлении сверхпроводимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равномерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то , что делают другие, ибо все бозе-частицы стремятся попасть в одинаковое состояние. Ток , если уж он пошел, то это навеки.
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле ( что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток , который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток , чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверхпроводником ), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток , и как раз в таком количестве, чтобы вытолкнуть поле наружу.
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть равен нулю. Но погодите, а как же с вариацией r? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать r постоянным. Далее, единственная возможность, чтобы Ñ2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом.
Очевидно, что равнодействующая всех сил равна произведению массы на ускорение: F1=(100000+50000*2)*0.5=100000 Ньютонов, или 100 кН.
Теперь найдем силу трения. Так как тело движется горизонтально, сила реакции опоры N будет равна весу тела m*g. Таким образом, зная, что сила трения равна произведению силы реакции опоры на коэффициент трения-скольжения, мы найдем, что F2=200000*10*0.006=12000 Ньютонов, или 12 кН.
Теперь, знаю равнодействующую силу и силу трения, мы с легкостью найдем силу тяги - Fтяги=F1+F2=112 кН=112000 Ньютонов