Задание #1 Вопрос: В Исландии и Франции морской компас начали использовать в 12-13 веках. Магнитный брусок закрепляли в центре деревянного креста, затем эту конструкцию помещали в воду, и крест, повернувшись, устанавливался в направлении север-юг. Каким полюсом магнитный брусок повернётся к северному магнитному полюсу Земли?
3) Южным
Задание #2 Вопрос: Какое вещество совсем не притягивается магнитом?
2) Стекло
Задание #3 Вопрос: Внутри стенового покрытия проложен изолированный провод. Как обнаружить местонахождения провода не нарушая стенового покрытия?
4) Поднести к стене магнитную стрелку. Проводник с током и стрелка будут взаимодействовать.
Задание #4 Вопрос: Можно ли пользоваться компасом на Луне для ориентирования на местности?
4) Нельзя
Задание #5 Вопрос: При каком условии магнитное поле появляется вокруг проводника? 1) Когда в проводнике возникает электрический ток.
Задание #6 Вопрос: Магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие
1) магнитные стрелки, помещенные в магнитном поле
Задание #7 Вопрос: Если в разных точках магнитного поля на магнитную стрелку действуют одинаковые силы, то такое поле называют
3) однородным
Задание #8 Вопрос: Магнит создает вокруг себя магнитное поле. Где будет проявляться действие этого поля наиболее сильно? 4) Около полюсов магнита.
Задание #9 Вопрос: Что следует сделать, чтобы стержень из закаленной стали намагнитился, т.е. сам стал постоянным магнитом?
1) Поместить в сильное магнитное поле
Задание #10 Вопрос: Какой полюс появится у заостренного конца гвоздя, если к его шляпке приблизить южный полюс магнита?
1. Структура электростатического поля В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е. r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства. Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).
2. Поле при отсутствии шара Когда у нас есть только точечный заряд модуль напряженности электростатического поля .
Потенциал электростатического поля связан с его напряженностью уравнением:
Интегрирование ведётся по произвольному пути между точками 1 и 2.
Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.
В нашем случае удобно интегрировать вдоль радиальных линий
Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю
Подставим в эту формулу найденное поле:
Получили известный результат. Выразим из этого результата заряд Q.
3. Поле при добавлении шара. Для поиска величины напряженности воспользуемся теоремой Гаусса.
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.
Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
Теперь рассмотрим отдельные участки: 1) Участок 0 < r < 3R
2) Участок 3R<r<4R E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :) 3) Участок r > 4R
4Q - суммарный заряд внутри сферы радиусом r.
Аналогично рассчитаем потенциал.
Подставляем в это выражение найденное ранее Q и имеем:
Что стоит отметить? 1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме. т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q. Складываем результаты.
2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.
3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.
Вопрос:
В Исландии и Франции морской компас начали использовать в 12-13 веках. Магнитный брусок закрепляли в центре деревянного креста, затем эту конструкцию помещали в воду, и крест, повернувшись, устанавливался в направлении север-юг. Каким полюсом магнитный брусок повернётся к северному магнитному полюсу Земли?
3) Южным
Задание #2
Вопрос:
Какое вещество совсем не притягивается магнитом?
2) Стекло
Задание #3
Вопрос:
Внутри стенового покрытия проложен изолированный провод. Как обнаружить местонахождения провода не нарушая стенового покрытия?
4) Поднести к стене магнитную стрелку. Проводник с током и стрелка будут взаимодействовать.
Задание #4
Вопрос:
Можно ли пользоваться компасом на Луне для ориентирования на местности?
4) Нельзя
Задание #5
Вопрос:
При каком условии магнитное поле появляется вокруг проводника?
1) Когда в проводнике возникает электрический ток.
Задание #6
Вопрос:
Магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие
1) магнитные стрелки, помещенные в магнитном поле
Задание #7
Вопрос:
Если в разных точках магнитного поля на магнитную стрелку действуют одинаковые силы, то такое поле называют
3) однородным
Задание #8
Вопрос:
Магнит создает вокруг себя магнитное поле. Где будет проявляться действие этого поля наиболее сильно?
4) Около полюсов магнита.
Задание #9
Вопрос:
Что следует сделать, чтобы стержень из закаленной стали намагнитился, т.е. сам стал постоянным магнитом?
1) Поместить в сильное магнитное поле
Задание #10
Вопрос:
Какой полюс появится у заостренного конца гвоздя, если к его шляпке приблизить южный полюс магнита?
2) Южный
В силу симметрии задачи, электростатическое поле является центрально-симметричны. т.е.
r₀ - единичный радиус-вектор от заряда к произвольной исследуемой точке пространства.
Задача и её решение инвариантна к повороту (как картинку "ни крути" вокруг заряда, условие задачи и её решение не изменится).
2. Поле при отсутствии шара
Когда у нас есть только точечный заряд модуль напряженности электростатического поля .
Потенциал электростатического поля связан с его напряженностью уравнением:
Интегрирование ведётся по произвольному пути между точками 1 и 2.
Отступление: если домножить уравнение на пробный заряд, то получим определение потенциальной энергии. Правый ингтеграл в этом случае будет работой, совершенной полем над пробным зарядом.
В нашем случае удобно интегрировать вдоль радиальных линий
Замечание: Потенциал определяется всегда с точностью до аддитивной постоянной, поэтому во всех задачах всегда выбирается, так называемое, условие нормировки. В разных задачах оно выбирается по разному, но в задачах данного типа принято брать потенциал бесконечно удаленной точки равным нулю
Подставим в эту формулу найденное поле:
Получили известный результат. Выразим из этого результата заряд Q.
3. Поле при добавлении шара.
Для поиска величины напряженности воспользуемся теоремой Гаусса.
Поток вектора напряженности электростатического поля через любую замкнутую поверхность пропорционален величине свободного заряда, находящегося внутри этой поверхности.
Выберем в качестве такой поверхности сферу радиусом r. В силу структуры поля E(r) = const.
Теперь рассмотрим отдельные участки:
1) Участок 0 < r < 3R
2) Участок 3R<r<4R
E(r) = 0 - электростатического поля внутри идеальных проводников не существует. Если предположить противное, то начнётся движение зарядов и это уже не статика. :)
3) Участок r > 4R
4Q - суммарный заряд внутри сферы радиусом r.
Аналогично рассчитаем потенциал.
Подставляем в это выражение найденное ранее Q и имеем:
Что стоит отметить?
1) Потенциал функция непрерывная. Если знать, что подобные симметричные структуры создают поля аналогичные точечным зарядам, то задача решается в уме.
т.е. мы ищем потенциал на внешней границе шара как потенциал точечного заряда 4Q, на внутренней границе он такой же. Ищем разность потенциалов между внутренней границей и точкой A в поле точечного заряда Q. Складываем результаты.
2) Несмотря на то, что заряд 3Q на шаре поле внутри шара не создаёт, он увеличивает потенциал точек внутри полости, т.к. создаёт дополнительное поле вне шара. Потенциал - это работа по перемещению точечного заряда из бесконечности в данную точку. Больше поле вне шара - больше работа.
3) Разность потенциалов зависит только от локального поля (поля по в окрестности пути, соединяющего две точки). Сам потенциал зависит от структуры всего поля.