Тело свободно отпускают с высоты H над поверхностью Земли. Чему равна скорость тела при достижении поверхности Земли, если радиус Земли R, ускорение свободного падения на поверхности Земли g? Сопротивление воздуха не учитывается.
Цилиндр на наклонной плоскости стоит устойчиво если продолжение вектора силы тяжести, приложенного к центру масс, пересекает основание цилиндра и не возникает некомпенсированного момента сил см рис 1 во вложении
цилиндр на наклонной плоскости стоит неустойчиво и может перевернуться если продолжение вектора силы тяжести, приложенного к центру масс, не пересекает основание цилиндра, возникает вращательный момент силы тяжести относительно переднего нижнего края цилиндра см рис 3 во вложении
на рис 2 ситуация когда высота цилиндра критична центр масс цилиндра находится на высоте h/2 полувысота и радиус образуют прямоугольный треугольник с углом alpha , противолежащим катету r tg(alpha) = r / (h/2) = tg(26,5град)= 0,498582 ~ 0,5 h = 2*r/tg(alpha) = 2*2/tg(26,5град) см ~ 2*2/0,5 = 8 см - это ответ
Выше (ниже) решение не совсем понятно. Могу поподробней. Итак, что имеем: Цилиндр стоит на наклонной плоскости (под определённым углом). Нужно определить, на каком расстоянии нужно поставить цилиндр чтобы он не упал. "Центр масс" - о чём это говорит? Вот представьте, разделил мы этот цилиндр на две равные части (пополам) и поставили на туже самую плоскость таким же образом, что мы получим? Верхняя часть опрокинется, а нижняя будет стоять на месте т.е. центр масс подразумевает что, масса верхней части и нижней будут "соосны" (будет определённый баланс). Если записывать математически: Центр масс = . Идём далее Один катет радиус, второй - половина высоты? О чём идёт речь.. Тут получаем треугольник. Рисунок добавлю. Критический угол - номинальный угол при котором цилиндр не опрокинется. Из рисунка получаем зависимость: отношение центра масс к радиусу основания .
цилиндр на наклонной плоскости стоит неустойчиво и может перевернуться если продолжение вектора силы тяжести, приложенного к центру масс, не пересекает основание цилиндра, возникает вращательный момент силы тяжести относительно переднего нижнего края цилиндра см рис 3 во вложении
на рис 2 ситуация когда высота цилиндра критична
центр масс цилиндра находится на высоте h/2
полувысота и радиус образуют прямоугольный треугольник с углом alpha , противолежащим катету r
tg(alpha) = r / (h/2) = tg(26,5град)= 0,498582 ~ 0,5
h = 2*r/tg(alpha) = 2*2/tg(26,5град) см ~ 2*2/0,5 = 8 см - это ответ
Итак, что имеем: Цилиндр стоит на наклонной плоскости (под определённым углом). Нужно определить, на каком расстоянии нужно поставить цилиндр чтобы он не упал.
"Центр масс" - о чём это говорит? Вот представьте, разделил мы этот цилиндр на две равные части (пополам) и поставили на туже самую плоскость таким же образом, что мы получим? Верхняя часть опрокинется, а нижняя будет стоять на месте т.е. центр масс подразумевает что, масса верхней части и нижней будут "соосны" (будет определённый баланс).
Если записывать математически: Центр масс = .
Идём далее
Один катет радиус, второй - половина высоты? О чём идёт речь..
Тут получаем треугольник. Рисунок добавлю.
Критический угол - номинальный угол при котором цилиндр не опрокинется.
Из рисунка получаем зависимость: отношение центра масс к радиусу основания .