Туда поезд ехал с учетом разницы во времени между пунктами отправления и назначения 17 часов 30 минут
Обратно поезд ехал тоже с учетом разницы во времени 13 часов 30 минут.
Известно, что время туда и время обратно должно совпадать, но у нас получается разница в 4 часа на дорогу в обе стороны. Значит половина этого времени (2 часа) прибавляется к времени в пути "туда", а вторая половина (2 часа) вычитается из времени в пути "обратно"
Отсюда находим что поезд фактически находился в пути "туда" 17ч30м минус 2 часа = 15 часов 30 минут, и фактически находился в пути "обратно" 13ч30м плюс 2 часа= 15 часов 30 минут. Округляя в десятичном виде до десятых получаем 15,5 ч.
15,5 ч
Объяснение:
Туда поезд ехал с учетом разницы во времени между пунктами отправления и назначения 17 часов 30 минут
Обратно поезд ехал тоже с учетом разницы во времени 13 часов 30 минут.
Известно, что время туда и время обратно должно совпадать, но у нас получается разница в 4 часа на дорогу в обе стороны. Значит половина этого времени (2 часа) прибавляется к времени в пути "туда", а вторая половина (2 часа) вычитается из времени в пути "обратно"
Отсюда находим что поезд фактически находился в пути "туда" 17ч30м минус 2 часа = 15 часов 30 минут, и фактически находился в пути "обратно" 13ч30м плюс 2 часа= 15 часов 30 минут. Округляя в десятичном виде до десятых получаем 15,5 ч.
Объяснение:
Высота подъема ракеты:
H₁ = a·t²/2 или
H₁ = 2t² (1)
Координата x снаряда:
x = t·V₀·cos α
Считая x = L = 9 000 м
имеем:
cos α = 9000 / (400·t)
cos α = 9000 / (400·t) = 22,5 / t
sin α = √ (1 - (22,5/t)²) = √ (1 - 500/t²)
Координата Y снаряда:
Y = t·V₀·sinα - gt²/2 = t·400·√ (1 - 500/t²) - 5·t² (2)
Приравняем (2) и (1)
t·400·√ (1 - 500/t²) - 5·t² = 2t²
400·√ (1 - 500/t²) = 7·t
Отсюда: снаряд попадет в ракету через:
t = 25 c
Тогда угол:
cos α =22,5 / t = 22,5/25 = 0,9
α = 25°