Во время равномерного подъема груза по наклонной плоскости, которая образует с горизонтом угол 30° надо приложить силу 600 н. если груз отпустить, то он будет соскальзывать с ускорением 3,8 м/с² определите массу этого груза. дано: f=600h ∠α=30° a=3,8 м/с² найти: m-?
где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост.
Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
Решение:
Шарик подвешен на нити, сверху на него действует сила натяжения нити, снизу - сила тяжести, а когда подносят отрицательно заряженный шарик - то и Кулоновская сила. (Т.к. разноименно заряженные тела притягиваются). Запишем второй закон Ньютона для данной системы:
При силе натяжения нити T она оборвется. Где F - Кулоновская сила, формула которой:
Где k - коэффициент Кулона равный k=9*10^9 Н*м^2/Кл^2. Заряды берем по модулю. Выражаем r: Считаем: r=√((9*10^9*11*10^-9*13*10^-9)/(10*10^-3*0,6*10^-3*10))=0,018 м. Либо r=18 мм. ответ: r=18 мм.