Мощность P = 6 Вт, площадь пластины S = 10 см², коэффициент отражения R = 0.6
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине. - Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п - Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади: p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям: . Это выражение также можно использовать для определения индукции магнитного поля: . Величину, равную произведению , называют магнитным моментом контура Рт.
Объяснение:
вращающий момент М , зависящий как от свойств магнитного поля в данной точке, так и от свойств контура. Вращающий момент определяется векторным произведением магнитного момента на вектор индукции магнитного поля
Вращающий момент – псевдовектор, направленный вдоль оси вращения таким образом, что с его острия виден переход от вектора магнитного момента к вектору индукции магнитного поля против часовой стрелки. Скалярное значение вращающего момента , где α – угол между и . При α=90° вращающий момент принимает максимальное значение . При α=0° или α=180° вращающий момент М=0.
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа
Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям: . Это выражение также можно использовать для определения индукции магнитного поля: . Величину, равную произведению , называют магнитным моментом контура Рт.
Объяснение:
вращающий момент М , зависящий как от свойств магнитного поля в данной точке, так и от свойств контура. Вращающий момент определяется векторным произведением магнитного момента на вектор индукции магнитного поляВращающий момент – псевдовектор, направленный вдоль оси вращения таким образом, что с его острия виден переход от вектора магнитного момента к вектору индукции магнитного поля против часовой стрелки. Скалярное значение вращающего момента , где α – угол между и . При α=90° вращающий момент принимает максимальное значение . При α=0° или α=180° вращающий момент М=0.