Сила F1, действуя на поршень S1, создает в жидкости дополнительное давление р=F1/S1. По закону Паскаля это давление передается жидкостью по всем направлениям без изменения. Следовательно, на поршень S2 действует сила давления F2=pS2=F1S2/S1. Из этого равенства следует, что F2/F1=S2/S1. Следовательно, силы, действующие на поршни гидравлического пресса, пропорциональны площадям этих поршней. Это значит, что расстояние, на которое опустился малый поршень, и расстояние, на которое поднялся большой поршень, тоже пропорциональны. Составим пропорцию: x/50Н=0,3см/15см x=50*0.3/15=15/15=1 Н. Вес груза равен 1Н, следовательно, масса груза равна: Fтяж=mg m=F/g=1Н / 9,8М/с2=0,102 кг
Минимальная кинетическая энергия будет в верхней точке траектории (в вершине параболы), в этой точке вертикальная составляющая скорости (проекция скорости на вертикальную ось) равна нулю, и, как известно горизонтальная составляющая скорости - постоянна. максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем. E_k_min = (m/2)*(v_x)^2; E_k_max = (m/2)*(v0)^2; (v0)^2 = (v0_y)^2 + (v_x)^2; по условию E_k_max = 2*E_k_min; (m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2; (v0_y)^2 + (v_x)^2 = 2*(v_x)^2; (v0_y)^2 = (v_x)^2; v0_y = v_x; итак: v0_y = v_x; tg(a) = v0_y/v_x = 1; a = arctg(1) = 45 градусов.
F2=pS2=F1S2/S1.
Из этого равенства следует, что
F2/F1=S2/S1.
Следовательно, силы, действующие на поршни гидравлического пресса, пропорциональны площадям этих поршней. Это значит, что расстояние, на которое опустился малый поршень, и расстояние, на которое поднялся большой поршень, тоже пропорциональны.
Составим пропорцию:
x/50Н=0,3см/15см
x=50*0.3/15=15/15=1 Н.
Вес груза равен 1Н, следовательно, масса груза равна:
Fтяж=mg
m=F/g=1Н / 9,8М/с2=0,102 кг
ответ: масса груза 0,102 кг.
максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем.
E_k_min = (m/2)*(v_x)^2;
E_k_max = (m/2)*(v0)^2;
(v0)^2 = (v0_y)^2 + (v_x)^2;
по условию E_k_max = 2*E_k_min;
(m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2;
(v0_y)^2 + (v_x)^2 = 2*(v_x)^2;
(v0_y)^2 = (v_x)^2;
v0_y = v_x;
итак: v0_y = v_x;
tg(a) = v0_y/v_x = 1;
a = arctg(1) = 45 градусов.