Наверное найти расстояние от центра окружности до точки Е.
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см. Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС. Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см.
Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС.
Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.