1) а) Изобразите окружность, соответствующая уравнению (х+4)2 + (у-3)2=49. b) Определите взаимное расположение прямой у=9 и окружности (х+4)2 + (у-3)2=49. 2) На рисунке ОА=13, ОВ=3√2. Луч ОВ составляет с положительным направлением оси Ох угол в 450. Точка А имеет координаты (m; 5). Точка В имеет координаты (c; d). a) Найдите значение координаты m точки А; b) Найдите координаты точки В; c) Найдите длину отрезка АВ.
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см