1. а) Ұзындықтары бірдей, бірақ коллинеар емес; ә) ұзындықтары бірдей және бағыттас; б) ұзындықтары бірдей және қарама-қарсы бағытталған екі вектор салыңдар.
Шаг 1. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки) . Шаг 2. Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Шаг 3. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса. Объяснение. Если соединить засечки, сделанные на шаге 1 с точкой пересечения дуг, то получится ромб. Диагональ ромба является биссектрисой его противоположных углов.
а) Для начала вспомним, что такое гомотетия. Гомотетия - преобразование подобия. Это преобразование, в котором выделяются подобные фигуры.
Проведём прямые АС и BD до пересечения в точке Е. тр. ЕАВ подобен тр. ЕСD по двум углам: угол Е - общий ; угол ЕАВ = угол ECD - как соответственные углы при параллельных прямых AB и СD и секущей ЕС. Как видно, одна фигура переходит в другую фигуру, ей подобную.
Дополнительное построение необходимо для понимания проявления гомотетии.
б) Найдём коэффициент гомотетии. Он равен коэффициенту подобия треугольников ЕАВ и ЕCD: АВ = k • CD 2 = k • 6 k = 1/3 ИЛИ CD = k • AB 6 = k • 2 k = 3
Гомотетия - преобразование подобия. Это преобразование, в котором выделяются подобные фигуры.
Проведём прямые АС и BD до пересечения в точке Е.
тр. ЕАВ подобен тр. ЕСD по двум углам:
угол Е - общий ;
угол ЕАВ = угол ECD - как соответственные углы при параллельных прямых AB и СD и секущей ЕС.
Как видно, одна фигура переходит в другую фигуру, ей подобную.
Дополнительное построение необходимо для понимания проявления гомотетии.
б) Найдём коэффициент гомотетии. Он равен коэффициенту подобия треугольников ЕАВ и ЕCD:
АВ = k • CD
2 = k • 6
k = 1/3
ИЛИ
CD = k • AB
6 = k • 2
k = 3
ОТВЕТ: а) будут ; б) 1/3 или 3.