а) (5;7) принадлежит данной прямой.
б) (0;1) не принадлежит данной прямой.
в) (0;-1) не принадлежит данной прямой.
г) (-5;-7) не принадлежит данной прямой.
Объяснение:
Подставим в уравнение прямой -3x+2y+1=0 координаты точек. Если равенство будет верным, то точка принадлежит прямой.
а)
-3*5+2*7+1=0
-15+14+1=0 - верное равенство. Значит (5;7) принадлежит данной прямой.
б)
-3*0+2*1+1=0
0+2+1≠0
Равенство не выполняется. Значит (0;1) не принадлежит данной прямой.
в) (0;-1)
-3*0+2*(-1)+1=0
-2+1≠0
Значит (0;-1) не принадлежит данной прямой.
г) (-5;-7)
-3*(-5)+2*(-7)+1=0
15-14+1=0
2≠0
Значит (-5;-7) не принадлежит данной прямой.
Площадь меньшего многоугольника 60 см².
Площадь большего многоугольника 135 см².
По условию стороны подобных многоугольников относятся как 3:2. Тогда коэффициент подобия k = 3/2.
Отношение площадей подобных многоугольников равно квадрату коэффициента подобия (или равно квадрату отношения соответствующих линейных размеров).
Пусть площадь меньшего многоугольника S₂ = x см², площадь большего многоугольника S₁ = x + 75 см².
Отношение площадей: S₁ / S₂ = k².
(x + 75)/x = (3/2)²;
(x + 75)/x = 9/4;
Произведение крайних членов пропорции равно произведению средних членов пропорции.
4(x + 75) = 9x;
4x + 300 = 9x;
5x = 300;
x = 300/5 = 60;
Площадь меньшего многоугольника S₂ = 60 см².
Площадь большего многоугольника S₁ = 60 см² + 75 см² = 135 см².
а) (5;7) принадлежит данной прямой.
б) (0;1) не принадлежит данной прямой.
в) (0;-1) не принадлежит данной прямой.
г) (-5;-7) не принадлежит данной прямой.
Объяснение:
Подставим в уравнение прямой -3x+2y+1=0 координаты точек. Если равенство будет верным, то точка принадлежит прямой.
а)
-3*5+2*7+1=0
-15+14+1=0 - верное равенство. Значит (5;7) принадлежит данной прямой.
б)
-3*0+2*1+1=0
0+2+1≠0
Равенство не выполняется. Значит (0;1) не принадлежит данной прямой.
в) (0;-1)
-3*0+2*(-1)+1=0
-2+1≠0
Значит (0;-1) не принадлежит данной прямой.
г) (-5;-7)
-3*(-5)+2*(-7)+1=0
15-14+1=0
2≠0
Значит (-5;-7) не принадлежит данной прямой.
Площадь меньшего многоугольника 60 см².
Площадь большего многоугольника 135 см².
Объяснение:
По условию стороны подобных многоугольников относятся как 3:2. Тогда коэффициент подобия k = 3/2.
Отношение площадей подобных многоугольников равно квадрату коэффициента подобия (или равно квадрату отношения соответствующих линейных размеров).
Пусть площадь меньшего многоугольника S₂ = x см², площадь большего многоугольника S₁ = x + 75 см².
Отношение площадей: S₁ / S₂ = k².
(x + 75)/x = (3/2)²;
(x + 75)/x = 9/4;
Произведение крайних членов пропорции равно произведению средних членов пропорции.
4(x + 75) = 9x;
4x + 300 = 9x;
5x = 300;
x = 300/5 = 60;
Площадь меньшего многоугольника S₂ = 60 см².
Площадь большего многоугольника S₁ = 60 см² + 75 см² = 135 см².