В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

1. Чему равна сумма углов выпуклого 102-угольника?
2. Сколько сторон имеет выпуклый многоугольник, сумма углов которого равна 1260°?
3. Диагональ разбивает выпуклый шестиугольник на два многоугольника, один из которых является четырёхугольником. Определите вид другого многоугольника
4. Диагональ разбивает выпуклый n-угольник на два многоугольника, один из которых является треугольником. Определите вид другого многоугольник
5. Периметр семиугольника, все стороны которого равны, на 42 см больше его стороны. Чему равна сторона семиугольника?
6. Многоугольник разделён на три многоугольника, площади которых равны 10 кв. см, 20 кв. см и 30 кв. см. Чему равна площадь данного многоугольника?
7. Найдите площадь прямоугольника, стороны которого равны 0,8 м и 30 см.
8. Найдите неизвестную сторону прямоугольника, если его площадь и одна из сторон соответственно равны 270 кв. см и 3 дм.
9. Стороны прямоугольника равны 4 см и 9 см. Чему равна сторона равновеликого ему квадрата?
10. Верно ли утверждение? Два равновеликих прямоугольника равны.
Да
Нет
11. Верно ли утверждение? Два равновеликих квадрата равны.
Да
Нет
12. Сторона квадрата равна большей стороне прямоугольника. Какой из этих четырёхугольников имеет бóльшую площадь?
Квадрат
Прямоугольник
13. Во сколько раз надо уменьшить сторону квадрата, чтобы его площадь уменьшилась в 36 раз?
14. Как изменится площадь прямоугольника, если: каждую его сторону увеличить в 4 раза?

Показать ответ
Ответ:
Асель1139
Асель1139
02.01.2020 15:09

1 задача:

Доведения:

Рассмотрим ΔABD и ΔАВС

1) АВ = ВС (ΔАВС - равнобедренный с основанием АС)

2) AD = DC (ΔАВС - равнобедренный с основанием АС)

3) BD - общая.

Итак, ΔABD = ΔСВС за III признаком piвностi треугольников.

3 этого следует, что ∟ABD = ∟CBD. Тогда BD - биссектриса ∟АВС.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой, поэтому АЕ = ЕС.

2 задача

Рассмотрим ΔАВС - равнобедренный (АВ = ВС),

тогда ∟А = ∟C (свойство равнобедренного треугольника).

Рассмотрим ΔАВК и ΔСВМ.

1) АВ = ВС (по условию)

2) ∟А = ∟C (ΔАВС - равнобедренный)

3) ∟ABK = ∟CBM (по условию).

Итак, ΔАВК = ΔСВМ за II признаком piвностi треугольников.

3 этого следует pавность всех соответствующих Элементы, а именно ВМ = ВК.

0,0(0 оценок)
Ответ:
Mesakea
Mesakea
13.08.2020 03:14

Даны координаты пирамиды: A1(6,8,2), A2(5,4,7), A3(2,4,7), A4(7,3,7).

1) Координаты векторов.

Координаты векторов находим по формуле:

X = xj - xi; Y = yj - yi; Z = zj - zi

здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;

Например, для вектора A1A2

X = x2 - x1; Y = y2 - y1; Z = z2 - z1

X = 5-6; Y = 4-8; Z = 7-2

A1A2(-1;-4;5)

A1A3(-4;-4;5)

A1A4(1;-5;5)

A2A3(-3;0;0)

A2A4(2;-1;0)

A3A4(5;-1;0)

2) Модули векторов (длина ребер пирамиды)

Длина вектора a(X;Y;Z) выражается через его координаты формулой:

a = √(X² + Y² + Z²).

Нахождение длин ребер и координат векторов.

Вектор А1A2={xB-xA, yB-yA, zB-zA} -1 -4 5 L = 6,480740698.

Вектор A2A3={xC-xB, yC-yB, zC-zB} -3 0 0 L =3.

Вектор А1A3={xC-xA, yC-yA, zC-zA} -4 -4 5 L = 7,549834435.

Вектор А1A4={xD-xA, yD-yA, zD-zA} 1 -5 5 L =7,141428429.

Вектор A2A4={xD-xB, yD-yB, zD-zB} 2 -1 0 L = 2,236067977.

Вектор A3A4={xD-xC, yD-yC, zD-zC} 5 -1 0 L = 5,099019514.

3) Уравнение прямой

Прямая, проходящая через точки A1(x1; y1; z1) и A2(x2; y2; z2), представляется уравнениями:

Параметрическое уравнение прямой:

x=x₀+lt

y=y₀+mt

z=z₀+nt

Уравнение прямой A1A2(-1,-4,5)

Параметрическое уравнение прямой:

x=6-t

y=8-4t

z=2+5t.

4) Уравнение плоскости А1А2А3.

x-6 y-8 z-2

-1 -4 5

-4 -4 5 = 0

(x-6)((-4)*5-(-4)*5) - (y-8)((-1)*5-(-4)*5) + (z-2)((-1)*(-4)-(-4)*(-4)) =

= - 15y - 12z + 144 = 0

Упростим выражение: - 5y - 4z + 48 = 0.

5) Уравнение прямой А4М, перпендикулярной к плоскости А1А2А3, - это высота из точки А4 на основание пирамиды.

Прямая, проходящая через точку M₀(x₀;y₀;z₀) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C).

Уравнение плоскости A1A2A3: - 5y - 4z + 48 = 0.

Уравнение А4М:

6) Уравнение плоскости, проходящей через точку перпендикулярно вектору A1A2.

Уравнение плоскости, проходящей через точку M₀(x₀, y₀, z₀) перпендикулярно вектору N = (l,m,n), имеет вид:

l(x- x₀) + m(y- y₀) + n(z- z₀) = 0

Координаты точки A4(7;3;7)

Координаты вектора A1A2(-1;-4;5)

-1(x - 7) + (-4)(y - 3) + 5(z - 7) = 0

Искомое уравнение плоскости:

-x - 4y + 5z-16 = 0.

7) Уравнение прямой А3N, параллельной прямой А1А2.

Необходимая для решения точка А3(2; 4; 7) задана по условию, а направляющий вектор для искомой прямой возьмём тот же, что для прямой А1А2, так как они параллельны: n=(-1;-4;5).

Объяснение:

сорри если не верно

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота