1. Чему равна сумма углов выпуклого четырнадцатиугольника?
2. Площадь параллелограмма равна 84 см2, а одна из его сторон — 12 см. Найдите высоту параллелограмма, проведённую к этой стороне.
3. Боковая сторона равнобедренного треугольника равна 15 см, а высота, проведённая к основанию, — 9 см. Найдите площадь треугольника.
4. Найдите площадь ромба, сторона которого равна 26 см, а одна из диагоналей на 28 см больше другой.
5. Боковая сторона равнобокой трапеции равна 10√2 см и образует с основанием угол 45°. Найдите площадь трапеции, если в неё можно вписать окружность решить это не тест и не контрольная
Можно с решением ?
Объяснение:
Определение
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.