KB⊥BC, AD||BC => KB⊥AD, ∠BKD=90 BO=OD (диагонали параллелограмма точкой пересечения делятся пополам) KO=OD (медиана, проведенная из вершины прямого угла, равна половине гипотенузы)
∠BEK=∠EKD, ∠EBD=∠BDK (накрест лежащие углы при AD||BC) △BOE~△KOD (по двум углам) BO/OD=OE/KO => BO=OE.
ИЛИ Средняя линия параллелограмма (и лежащая на ней точка пересечения диагоналей) делит всякий отрезок, соединяющий противоположные стороны, пополам (по теореме Фалеса). Диагонали четырехугольника BEDK делятся точкой пересечения пополам => BEDK - параллелограмм. В параллелограмме BEDK угол KBE - прямой => BEDK - прямоугольник. Диагонали прямоугольника равны => равны их половины, BO=OE.
Пусть АВС - треугольник, АД - медиана, проведенная из вершины А на сторону ВС, СЕ - медиана, проведенная из вершины С на сторону АВ. Медианы АД и СЕ пересекаются в точке М. Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ. Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы) Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС. Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС, Значит АВ=ВС, треугольник АВС - равнобедренный.
BO=OD (диагонали параллелограмма точкой пересечения делятся пополам)
KO=OD (медиана, проведенная из вершины прямого угла, равна половине гипотенузы)
∠BEK=∠EKD, ∠EBD=∠BDK (накрест лежащие углы при AD||BC)
△BOE~△KOD (по двум углам)
BO/OD=OE/KO => BO=OE.
ИЛИ
Средняя линия параллелограмма (и лежащая на ней точка пересечения диагоналей) делит всякий отрезок, соединяющий противоположные стороны, пополам (по теореме Фалеса). Диагонали четырехугольника BEDK делятся точкой пересечения пополам => BEDK - параллелограмм. В параллелограмме BEDK угол KBE - прямой => BEDK - прямоугольник. Диагонали прямоугольника равны => равны их половины, BO=OE.
Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ.
Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы)
Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС.
Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС,
Значит АВ=ВС, треугольник АВС - равнобедренный.