1) дан прямоугольный параллелепипед abcda1b1c1d1. найти двугранный угол c1adb, если bd=3корней из 2, ad=3, aa1=корень из 3 2) через вершину треугольника fmp проведена прямая fe, перпендикулярная к плоскости треугольника. известно, что fe=24, mp=6 корней из 21, mf=pf. найдите fm, если расстояние от
точки e до прямой mp=6 корней из 41. 3) дан прямоугольный параллелепипед abcda1b1c1d1. угол между прямыми b1c и dc1 =60°. определит вид четырёхугольника bb1cc1.
проводим касательную, проводим радиусы в точки касания, и соединяем центры. кроме того, из центра меньшей окружности проводим пепендикуляр к радиусу большей окружности, проведенном у точку касания. этот перпендикуляр равен общей касательной (там прямоугольник: получился прямоугольный треугольник со сторонами d = корень(80) - линия центров, это гипотенуза треугольника, (r - r), и второй катет в качестве искомого расстояния.
x^2 = d^2 - (r - r)^2;
по условию r - r = 4; x^2 = 80 - 16 = 64; x = 8;
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см