Найти биссектрису большего угла треугольника, если стороны треугольника равны 3см, 4см и 5см. Решение: Треугольник со сторонами 3,4,5 - прямоугольный (египетский). Больший угол прямоугольного треугольника равен 90°. Биссектриса делит сторону, к которой проведена, в отношении прилежащих сторон. Следовательно, она делит гипотенузу в отношении 4:3, т.е. на 7 частей. Пусть биссектриса равна х и разделила треугольник на два со сторонами в каждом: 4; 4*5/7 и х 3; 3*5/7 и х. Для нахождения биссектрисы применим теорему косинусов. Но манипуляции с косинусом 45°=(√2):2 нельзя назвать удобными. Возьмем косинус одного из острых углов 3/5 Тогда стороны меньшего треугольника 3; 15/7 и х( биссектриса) По теореме косинусов х²=9+225/49-6*(15/7)*3/5 х²=288/49=144*2/49 х=(12/7 )*√2 Есть формулы, облегчающие нахождения биссектрисы, (если их знать и помнить). Для биссектрисы из прямого угла это L=√2(ab/(a+b)) где L- биссектриса, a и b - катеты. По этой формуле L=√2*3*4:(3+4)=√2*12/7 При желании можно вычислить, что это составит примерно калькулятору)
Обънайдем середины отрезков:
1) точка К на отрезке АС: К(-2+0/2;2+0/2) = K(-1;1)
уравнение медианы ВК: х-х1/х2-х1 = у-у1/у2-у1
х-1/-1-1 = у-2/1-4 = 3х-2у + 1 = 0
2) тока L на отрезке АВ: L(-0,5;3)
уравнение медианы CL: х-0/0,5-0 = у-0/3-0 = 3х +0,5у=0
3) точка M на отрезке ВС: M(0,5;2)
уравнение медианы АМ: х+2/0,5+2 = у-2/2-2
х+2/2,5 = 1, х = 0,5
!!!уравнение сторон:
уравнение стороны АВ: х+2/3 = у-2/2 = 2х-3у+10 = 0
уравнение стороны АС: х+2/0+2 = у-2/0-2 = 2у-2х = 0
уравнение стороны ВС: х-1/0-1 = у-4/0-4 = 4х-у = 0
Решение:
Треугольник со сторонами 3,4,5 - прямоугольный (египетский).
Больший угол прямоугольного треугольника равен 90°.
Биссектриса делит сторону, к которой проведена, в отношении прилежащих сторон.
Следовательно, она делит гипотенузу в отношении 4:3, т.е. на 7 частей.
Пусть биссектриса равна х и разделила треугольник на два со сторонами в каждом:
4; 4*5/7 и х
3; 3*5/7 и х.
Для нахождения биссектрисы применим теорему косинусов.
Но манипуляции с косинусом 45°=(√2):2 нельзя назвать удобными.
Возьмем косинус одного из острых углов 3/5
Тогда стороны меньшего треугольника
3; 15/7 и х( биссектриса)
По теореме косинусов
х²=9+225/49-6*(15/7)*3/5
х²=288/49=144*2/49
х=(12/7 )*√2
Есть формулы, облегчающие нахождения биссектрисы, (если их знать и помнить).
Для биссектрисы из прямого угла это
L=√2(ab/(a+b)) где L- биссектриса, a и b - катеты.
По этой формуле
L=√2*3*4:(3+4)=√2*12/7
При желании можно вычислить, что это составит примерно калькулятору)