1. Дана величина угла вершины 4 А равнобедренного треугольника RAC, Определи величины углов,
прилежащих к основанию.
4 A = 110°,
X
R =
,
2. Величина одного из прилежащих к основанию углов равнобедренного треугольника — 33“. Определи
величину угла вершины этого треугольника.
ответ:
ответить!
Ну конечно в ЕГЭ нужно все подробно расписывать там по 1,2 признаку подобия и тд. Думаю, сам как нужно распишешь....
Проведем KO∥AA1
И сделаем проекцию KM на пл ABC
Это будет прямая OM
Рассмотрим плоскость основания, в нем проведем высоту BH-она делит основание AC пополам, так как по условию треугольник равнобедренный
Но тут не трудно заметить, что △AMO подобен △AHB с коэффициентом подобия равным 2. Значит MO∥BH и MO перпендикулярно AC
Теперь т о 3-х перпендикулярах. Если прямая перпендикулярна проекции прямой на плоскость. То такая прямая перпендикулярна этой прямой.
У нас MO перпендикулярна AC значит по т о 3-х перпендикулярах KM перпендикулярна прямой AC ч.т.д
Ромб ABCD, окружность проходит через точки A, B, C
AK = 5 см; КС = 1, 4 см ⇒ АС = АК + КС = 5 + 1,4 = 6,4 см
У ромба диагонали перпендикулярны и точкой пересечения делятся пополам : AC⊥BD; AO=OC = AC/2 = 6,4 /2 = 3,2 см; BO=OD.
AK⊥BD и делит хорду BD пополам ⇒ AK - диаметр окружности.
ΔABK - прямоугольный, так как сторона AK является диаметром описанной окружности.
Высота треугольника, проведенная из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу :
BO² = AO·OK = AO·(AK-AO) = 3,2·(5-3,2) = 3,2·1,8 = 5,76 = 2,4²
BO = 2,4 см
ΔAOB образован диагоналями, прямоугольный. Теорема Пифагора
AB² = AO² + BO² = 3,2²+2,4² = 10,24+5,76= 16 = 4²
AB = 4 см
ответ: сторона ромба равна 4 см