1. Дана величина угла вершины ∡ N равнобедренного треугольника RNG. Определи величины углов, прилежащих к основанию.
∡ N= 109°;
∡ R=
°;
∡ G=
°.
2. Величина одного из прилежащих к основанию углов равнобедренного треугольника — 52°. Определи величину угла вершины этого треугольника.
ответ:
°.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
В линейной функции y = kx+b
k и b — числовые коэффициенты.
Графиком является прямая.
k – "направление" по оси X
b – смещение по оси Y
Если k>0, то прямая будет идти в "положительную" сторону по оси X,
если k<0, то прямая бужет идти в "минус" по оси X.
(прямая, образно, идёт снизу вверх)
/рис. 1/
График функции, прямая, пересекается с осью Y в точке b
/рис. 2/
Смотрим "направление" функции:
в первом графике k>0,
во втором графике k<0,
в третьем графике k<0.
Смотрим пересечение функции с осью Y:
В первом графике b>0,
во втором графике b<0,
в третьем графике b>0.
1 — В, 2 — А, 3 — Б