1. Дано: треугольник АВС, Д∉(АВС), К – середина ДА, М – середина ДВ. 1) Доказать: а) КМ ll (АВС) б) КМ – ВС.
2) Определите взаимное расположение прямых:
а) КМ и АС б) ДК и АД в) АВ и ДС г) КМ и ДВ
2. ТМКР – прямоугольник, КС ⊥ (МКР). Угол между прямой СТ и плоскостью (МКР)
равен 60°. Проекция наклонной СТ равна 3 см. найдите расстояние от С до плоскости (МКР).
3. АВСД – прямоугольник, КВ ⊥ (АВС), КВ = 3 см, АД = 6 см. Найдите расстояние от К до СД.
4. МКРТ – квадрат, ОР ⊥ (МКР), ОР = 5 см, КР = 6 см. Найдите расстояние от О до КМ.
теория-чение, система идей или принципов. Является совокупностью обобщенных положений, образующих науку или ее раздел.
теорема-утверждение, для которого в рассматриваемой теории существует доказательство.
аксиома-постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.
медиана- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
высота-измерение объекта или его местоположения, отмеряемое в вертикальном направлении. В толковом словаре Ушакова определена как «протяжение снизу вверх, вышина».
биссектриса угла, прямая, проходящая через вершину угла и делящая его пополам.
угол- геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла). Плоскость, содержащая обе стороны угла, делится углом на две области.
Диагонали квадрата равны и точкой пересечения делятся пополам:
ОА = ОВ.
Если проекции наклонных, проведенных из одной точки, равны, то равны и сами наклонные.
ОА - проекция МА на плоскость квадрата, ОВ - проекция МВ, значит
МА = МВ, т.е. ΔМАВ равнобедренный.
Пусть Н - середина АВ. Так как треугольник МАВ равнобедренный, то МН - его медиана и высота.
ОН = 0,5AD = 9 см как средняя линия ΔDAB.
ΔМОН: ∠МОН = 90°, по теореме Пифагора
МН = √(МО² + ОН²) = √(144 + 81) = √225 = 15 см
Smab = AB · MH / 2 = 18 · 15 / 2 = 135 см²