1. даны два вектора m {— 2; 1; — 1} и п {1; 3; 2}. найдите
12т — п1 и 12т | — п.
2. в параллелограмме abcd диагонали пересекаются в точке
о, а (1; 3; — 1), в (— 2; 1; 0), о(0; 1,5; 0).
1) найдите координаты вершин c и d.
2) найдите длину стороны вс.
3) разложите вектор ad по векторам i, i и ќ.
Хмара є видима сукупность малых частіць воды або леду (припадно іншых латок) в атмосферї Земли або іншых планет. Хмары выникають тогды, кідь вогкость воздуху скондензує на капкы або ледовы крішталикы. Высота, в котрій ся така дїя одбывать є різна і граніця за котров ся вода в ґазовій формі мінить на капалину ся зове точка росы. Залежыть на стабілітї воздуху і множестві прітомной вогкости. Звычайна хмарна капка або ледовый крішталик мать середнїй діаметер приближно 0,01 мм. Холодны хмары творячі ся у великых вышках обсягують лем ледовы крішталикы, низшы, теплїшы хмары обсягують лем водны капкы.
Хмары кумулус, котры ся творять за шумной Хвілї
Хмары стратокумулус зверьху
Часто ся обявує помыленый погляд, же хмары суть зложены з водной пары. То не правда, бо сама водна пара не є видима без огляду на вышку і густоту. Хмары творить вода в капалній або певній формі.
Доказательство теоремы Пифагора
Пусть треугольник ABC - прямоугольный треугольник с прямым углом C
Проведём высоту из вершины C на гипотенузу AB, основание высоты обозначим как H .
Прямоугольный треугольник ACH подобен треугольнику ABC по двум углам ( ∠ACB=∠CHA=90∘∠ACB=∠CHA=90∘, ∠A∠A - общий). Аналогично, треугольник CBH подобен ABC .
Введя обозначения
BC=a,AC=b,AB=cBC=a,AC=b,AB=c
из подобия треугольников получаем, что
ac=HBa,bc=AHbac=HBa,bc=AHb
Отсюда имеем, что
a2=c⋅HB,b2=c⋅AHa2=c⋅HB,b2=c⋅AH
Сложив полученные равенства, получаем
a2+b2=c⋅HB+c⋅AHa2+b2=c⋅HB+c⋅AH
a2+b2=c⋅(HB+AH)