1. Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора. AB−→−{1;6}.
B(5;−1); A(
;
).
2. Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{1;6}.
M(2;−1); N(
;
).
Проекция точки на плоскость есть точка пересечения с плоскостью прямой, проходящей через данную точку перпендикулярно к данной плоскости. Перпендикулярные прямые, проведенные к одной и той же плоскости, параллельны. ⇒ Отрезки перпендикулярных прямых от вершин параллелограмма к плоскости взаимно параллельны. В четырехугольнике АА1С1С стороны АА1|║СС1, в четырехугольнике ВВ1ДД1 стороны ВВ1║ДД1. В выпуклых четырехугольниках АА1С1С и ВВ1Д1Д две стороны параллельны, они – трапеции по определению.
Проведем в параллелограмме и его проекции диагонали. Точки их пересечения обозначим О и О1 соответственно. Диагонали параллелограмма точкой пересечения делятся пополам. Следовательно, ОО1 - средняя линия трапеций АА1С1С и ВВ1Д1Д. Тогда ОО1=(АА1+СС1):2= 10:2=5 м. Поэтому ВВ1+ДД1=2•ОО1=10. ⇒ДД1=10-3=7 м.