1. Даны точки A(0; - 1), B(- 1;0), C(0;0) и D(0; - 1). Укажите те из них, которые лежат на прямой 3x - 3y -3 = 0. 2. Найти расстояние между точками А (1; -2) и В (-2; 2) 3. Напишите уравнение прямой, проходящей через точки А (2; 3) и В
Дано: ΔABC - прямоугольный, ∠C = 90°, ∠ABC = 60°, AC = 6 см.
Найти: а) AB; б) CD
Решение: 1) Рассмотрим ΔABC: ∠ABC = 60°, ∠C = 90°, ∠A = 30° (т. к. 180° - (90° + 60°) = 30); Найдем сторону AB через синус угла ABC (синус острого угла равен отношению противолежащего катета к гипотенузе): sin60° = = = ; Отсюда AB = = см.
2) Рассмотрим ΔACD, в котором ∠D = 90°, а ∠CAD = 30° (из 1); Согласно свойству прямоугольного треугольника с углом в 30°, катет, лежащий напротив угла в 30°, равен половине гипотенузы, следовательно, CD = 1/2*AC = 1/2*6 = 3 см.
108см²
Объяснение:
Фигура квадрат
Формула нахождения периметра квадрата
Р=4*АВ.
Найдем из этой формулы сторону квадрата.
АВ=Р:4=48:4=12 см сторона квадрата.
Теперь найдем площадь квадрата.
Sавсd=AB²=12²=12*12=144см² площадь квадрата.
Квадрат разделен на 4 равных треугольника.
Найдем площадь одного из этих треугольников.
S∆AED=Saвсd:4=144:4=36см² площадь одного треугольника.
Площадь фигуры, которой нам нужно найти состоит из 3 треугольников, если площадь одного треугольника равна 36, то трёх таких треугольников будет.
SABECD=3*S∆AED=3*36=108см²
Дано: ΔABC - прямоугольный, ∠C = 90°, ∠ABC = 60°, AC = 6 см.
Найти: а) AB; б) CD
Решение: 1) Рассмотрим ΔABC: ∠ABC = 60°, ∠C = 90°, ∠A = 30° (т. к. 180° - (90° + 60°) = 30); Найдем сторону AB через синус угла ABC (синус острого угла равен отношению противолежащего катета к гипотенузе): sin60° = = = ; Отсюда AB = = см.
2) Рассмотрим ΔACD, в котором ∠D = 90°, а ∠CAD = 30° (из 1); Согласно свойству прямоугольного треугольника с углом в 30°, катет, лежащий напротив угла в 30°, равен половине гипотенузы, следовательно, CD = 1/2*AC = 1/2*6 = 3 см.
ответ: а) см; б) CD = 3 см.