1. Диагонали прямоугольника АВСД пересекаются в точке О, угол АВО равен 51 0.Найдите угол АОД. (3 б.) 2. Диагонали ромба АВСD пересекаются в точке О. Найдите углы треугольника ВОС, если угол АВС равен 1240.(4 б.)
3. В равнобокой трапеции сумма углов равна 2140. Найдите углы трапеции.
(4 б.)
4. Периметр параллелограмма 62 см. Одна из его сторон на 7 см больше другой. Найдите длины сторон параллелограмма.(5 б.)
5. В параллелограмме КМНР проведена биссектриса угла МКР, которая пересекает сторону МН в точке Е.
а) Докажите, что треугольник КМЕ равнобедренный
б) найдите периметр КМНР, если МЕ = 10 см, ЕН = 6 см.( 8 б.)
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)