1)длина классной команты 4м а ширина 4м а высота 2.5м.найти площадь диагонального сечения 2)в правильной треугольной пирамиде высота равна 12см и образует с боковым ребром пирамиду 45 градусов.чему равно боковое ребро? вычислите площадь боковой поверхности пирамиды 3)в осевом сечении конуса равнобедренный треугольник с боковой стороной равной 12см и острым углом при основании в 45 градусов найдите площадь осевого сечения. 4)шар,радиус которого равен 8 см пересечен плоскостью под углом в 60 градусов к радиусу.найдите площадь сечения
точка а находится на одинаковом расстоянии от всех вершин равностороннего треугольника, => точка а проектируется в центр правильного треугольника.
найти длину перпендикуляра н.
центр правильного треугольника - точка пересечения медиан, высот, биссектрис, в которой они делятся в отношении 2: 3, считая от вершины.
высота h правильного треугольника вычисляется по формуле: h=a√3/2.
h=(4√3)*√3/2, h=6 см.
рассмотрим прямоугольный треугольник: катет - высота н, катет - (2/3)h=4 см, гипотенуза - расстояние от точки а до вершин треугольника =5 см.
по теореме пифагора: 5²=н²+4². н=3 см
ответ: расстояние от точки а до плоскости треугольника 3 см
точка а находится на одинаковом расстоянии от всех вершин равностороннего треугольника, => точка а проектируется в центр правильного треугольника.
найти длину перпендикуляра н.
центр правильного треугольника - точка пересечения медиан, высот, биссектрис, в которой они делятся в отношении 2: 3, считая от вершины.
высота h правильного треугольника вычисляется по формуле: h=a√3/2.
h=(4√3)*√3/2, h=6 см.
рассмотрим прямоугольный треугольник: катет - высота н, катет - (2/3)h=4 см, гипотенуза - расстояние от точки а до вершин треугольника =5 см.
по теореме пифагора: 5²=н²+4². н=3 см
ответ: расстояние от точки а до плоскости треугольника 3 см