1. Длина одной из сторон параллелограмма составляет 20% от длины другой стороны. Найдите длину меньшей стороны этого параллелограмма, если его периметр равен 24 см. 2. Сумма градусных мер трёх углов параллелограмма равна 203°. Найдите величины углов этого параллелограмма.
3. Отрезки AM и АК - высоты параллелограмма ABCD. Найдите величину угла МАК, если величина угла ADC равна 38°.
4. Биссектриса АК угла BAD параллелограмма ABCD делит сторону ВС на отрезки ВК = 4 и КС = 8. Найдите периметр этого параллелограмма.
5. Высоты параллелограмма равны 18 м и 24 м. Найдите расстояние от точки пересечения диагоналей параллелограмма до одной из его больших сторон.
Решите Очень надо
Объяснение:
а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
16+8√13 =8*(2+√13) / см²/
Подробнее - на -