1) Дві площини взаємно перпендикулярні. Точка А віддалена від них на 8 см і 6 см. Знайдіть відстань від точки А до лінії перетину цих площин.
2) Ортогональною проекцією трапеції є рівнобічна трапеція, основи якої дорівнюють 6 см і 10 см, а діагоналі перпендикулярні. Знайдіть площу даної трапеції, якщо кут між її площиною і площиною проекції дорівнює 45°.
3) З точки В під кутом 45 градусів до площини а проведено похилу ВА. Пряма АС належить площині а й утворює кут 60 градусів з проекцією похилої АВ на площину а. Визначте довжину відрізка ВС і його кут нахилу до площини а, якщо АВ= 4√2 см, АС= 4см.
Пусть точка Е принадлежит этой области.
Чтоб не загромождать рисунок, построим только одну окружность с диметром AD.
Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G.
Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°.
Следовательно, <AЕD обязательно будет острым (<AЕD < 90°).
Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°.
Пришли к противоречию.
Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.
Параллельные прямые a и b лежат в плоскости гамма. Через прямую a проведена плоскость альфа, а через прямую b - плоскость бета так, что плоскости альфа и бета пересекаются по прямой c. Докажите, что c параллельна гамма.
-------------
1) Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются, то линия их пересечения параллельна каждой из данных прямых.
⇒ с || а и с || b
2) Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости
Прямая с, по которой пересекаются плоскости α и β, не лежит в плоскости гамма и параллельна а, лежащей в этой плоскости (см.п1). Требуется доказать п.2, т.е. что прямая с параллельна плоскости гамма.
Плоскость α содержит прямые с и а (с || а- см п.1).
Предположим, что прямая с пересекает плоскость гамма в точке М.
Тогда точка М принадлежит и плоскости гамма, и плоскости α, т.е. точка М принадлежит прямой а, содержащей линию, по которой плоскости α и гамма пересекаются. Получается, что прямые с и а пересекаются, что противоречит п.1.
(аналогично требуемое доказывается через прямую b).
Следовательно, с || гамма, ч.т.д.