1. используя рисунок, отрезки ас и cd
2. две стороны прямоугольного треугольника равны: 4 см и 5 см. найдите третью сторону треугольника. рассмотрите все возможные случаи.
3. в прямоугольном треугольнике of-
используя значение тангенса о угла, изобразите угол от.
4. катет прямоугольного треугольника равен 20 см, а его проекция на гипотенузу 16 см. найдите гипотенузу и второй катет треугольника.
5. найдите углы ромба abcd, если его диагонали ас и bd равны 6 v3 и 6
По построению треугольник АBH прямоугольный , следовательно угол Н= 90 градусов,угол А= 60 по условию, угол В= 30 по условию, что сумма углов треугольника равна 180 градусов. Так как ВА является гипотенузой и по условию равна 8 см, можно найти катеты треугольника : ВН=ВА*cos30 или ВН=ВА*sin60 ,а катет АН=AB*sin30 или AH=AB*cos60
ВН=8*cos30=8*0,86=6,88 см
АН=8*sin30=8*0,5=4 см
так как по условию АН=АD=4 cм, тогда АD=8 cм, а так как трапеция прямоугольная и ВН-высота, то DH=CB= 4 cм
площадь трапеции равна S= (a+b): 2 * h= (4+8):2*6.88=41,28 см2
Площадь трапеции равна 41,28 см2
Смотри вниз периодически.
а) DC║AB, AB ⊂ α ⇒ DC ║ α или DC ⊂ α.
Комментарий: если DC ⊂ α, то D, D₁ и C, C₁ совпадают, поэтому рассматривать дальше при этом условии не интересно.
б) (ADD₁) ∩ (DCC₁) = DD₁ т.к. DD₁ ⊂ (ADD₁) и DD₁ ⊂ (DCC₁) т.к.
D ∈ (DCC₁); DD₁ ║ CC₁ (по условию) и СС₁ ⊂ (DCC₁).
в) (ADD₁) ║ (BCC₁) т.к. AD ║ BC (как противоположные стороны параллелограмма); DD₁ ║ CC₁ (по условию); AD ∩ DD₁ ; BC ∩ CC₁ ;
AD, DD₁ ⊂ (ADD₁) и ВС, СС₁ ⊂ (BCC₁).
г) AD₁ ║ BC₁ т.к. AD₁ ⊂ (ADD₁); BC₁ ⊂ (BCC₁); (ADD₁) ║ (BCC₁) и
AD₁ , BC₁ ⊂ α.
д) Раз плоскость (β), которую нам надо провести параллельная (ADD₁), то она будет параллельная и (BCC₁) т.к. (ADD₁) ║ (BCC₁), отрезки заключённые между параллельными плоскостями на параллельных прямых равны, поэтому другие точки лежащие по середине DC и D₁C₁ будет принадлежать β, а по трём точкам можно провести плоскость.