1. Изобразите три взаимного расположения прямой и окружности по
отношению друг к другу.
2. Выпишите определения : секущая к окружности, касательная к
окружности.
3. Выпишите формулировку теоремы о свойстве касательной.
4. Выпишите свойства отрезков касательной.
Определение:
МНОГОУГОЛЬНИК - плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах).
Минимальное количество сторон многоугольника - три.
Если его углы равны, то не могут быть меньше 60 градусов.
Как известно, сумма углов треугольника 180 градусов.
Поэтому не может быть такого многоугольника, где каждый угол равен
1) 18° 2) 12° 3) 30°.
Возможно, речь идет о внешних углах многоугольника.
Тогда решение будет таким:
Сумма всех внешних углов многоугольника 360°.
Каждый внешний угол со смежным ему внутренним составляет развернутый угол с градусной мерой 180°
Если внешний угол 18°, то сторон у многоугольника
360°:18°=20 сторон
Если внешний угол 12°, то
360°:12°=30 сторон
Если 30°, то
360°:30°=12 сторон
Определение:
МНОГОУГОЛЬНИК - плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах).
Минимальное количество сторон многоугольника - три.
Если его углы равны, то не могут быть меньше 60 градусов.
Как известно, сумма углов треугольника 180 градусов.
Поэтому не может быть такого многоугольника, где каждый угол равен
1) 18° 2) 12° 3) 30°.
Возможно, речь идет о внешних углах многоугольника.
Тогда решение будет таким:
Сумма всех внешних углов многоугольника 360°.
Каждый внешний угол со смежным ему внутренним составляет развернутый угол с градусной мерой 180°
Если внешний угол 18°, то сторон у многоугольника
360°:18°=20 сторон
Если внешний угол 12°, то
360°:12°=30 сторон
Если 30°, то
360°:30°=12 сторон