1. Какая высота у треугольника? Какие свойства вы знаете о высоте треугольника? 2. 1) Проведите биссектрису и середину данного треугольника.
2) а) острый угол; б) прямоугольная; б) Нарисуйте высоту тупого треугольника.
3. Докажите, что если стороны AB и AC не равны в треугольнике ABC, средняя высота треугольника AM не равна.
4. Угол ABC равен 140 градусам а BD - биссектриса этого угла. Найдите значение угла ABD.
5. Вычислить значение угла между биссектрисами тупых углов, одна из которых равна 30 градусам.
Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны).
Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС.
А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2