В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ApTeM098
ApTeM098
29.01.2021 02:09 •  Геометрия

1. которая из предлагаемых точек принадлежит оси у?
а.(-2; 0; 3) б.(0; -1; 0) в.(5; 0; 0) г.(-1; 2; -1) д.(0; 0; -8)

2. которая из предлагаемых точек принадлежит плоскости xz?
а.(5; -2; -3) б.(0; -1; 4) в.(0; 7; 0) г.(4; 0; -2) д.(4; -2; 0)

3. точка р находится на отрицательной полуоси аппликату на расстоянии 5 от начала координат. найти координаты точки р.
а.(-5; -5; -5) б.(-5; -5; 0) в.(0; 0; -5) г.(0; 0; 5) д.(0; -5; 0)

4. найти координаты середины отрезка ав, якшщо а(-2; 3; 4), в(4; -1; -6)
а.(2; 2; -2) б.(-6; 4; 10) в.(1; 1; 2) г.(1; 1; 1) д.(1; -1; -1)

5. на каком расстоянии от плоскости ху находится точка а (-2; -3; 9)?
а.2 б.3 в.4 г.5 д.9

Показать ответ
Ответ:
Map21
Map21
10.05.2022 23:40
1. Дано: <AOB и <BOC - смежные
             ОD - биссектриса <AOB
             OF - биссектриса <BOC
            <AOD : <FOC =2 : 7
  Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
           <FOC=70°

2. Дано: <EAC=<DCA
             DF=EF
  Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда 
AF=FC.
Так как DC=DF+FC  и   AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
0,0(0 оценок)
Ответ:
pkulanina
pkulanina
10.05.2022 23:40
1. Дано: <AOB и <BOC - смежные
             ОD - биссектриса <AOB
             OF - биссектриса <BOC
            <AOD : <FOC =2 : 7
  Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
           <FOC=70°

2. Дано: <EAC=<DCA
             DF=EF
  Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда 
AF=FC.
Так как DC=DF+FC  и   AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота