1. Многокутник ABCDE вписаний у коло з центром у точці О. Доведіть, що якщо ∠АОВ=∠СО, то сторони АВ і СD знаходяться на однаковій відстані від центра кола. 2. Многокутник ABCDE вписаний у коло з центром у точці О. Доведіть, що якщо градусні міри дуги ЕD і дуги ВС рівні, то ∆ЕОD=∆ВОС. 3. Многокутник ABCDE описаний навколо кола з центром у точці О. Діагональ АС перетинає відрізок ОВ у точці М так, що АМ=8 см, МС=9 см. Знайдіть сторону ВС, якщо АВ=16 см. 4. Многокутник ABCDE описаний навколо кола з центром у точці О. Точка О сполучена з точками дотику сторін АВ і ВС відповідно відрізками ОМ і ОN, ∠МОN=80°. Знайдіть ∠АВС
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
Угол ВАС = 30 градусов
Угол ВСА = 30 градусов
Угол АВС = 120 градусов
Объяснение:
Высота делит треугольник на два равных прямоугольных треугольника BDC и BDA, если меньший катет лежит против угла в 30 градусов значит этот катет равен половине гипотенузы, в треугольнике BDC, ВС - гипотенуза
ВС=25,6 по условию, BD - меньший катет BD= 12,8 по условию, как мы видим меньший катет равен половине гипотенузы, значит угол С=30 градусов, теперь надо найти угол DBC, сумма углов любого треугольника составляет 180 градусов, в нашем треугольнике угол D=90 градусов(так как прямой), угол С = 30 градусов(мы нашли выше), значит угол DBC=180-90-30=60 градусов
Угол С=30 градусов
Угол А=30 градусов (так как треугольник равнобедренный, значит и углы прилежащие к основанию равны)
Угол В=60+60=120 градусов