1)могут ли прямая и плоскость не иметь общих точек? 2)верно ли, что если две прямые не пересекаются, то они параллельны? 3)Плоскости a и b параллельны, прямая m лежит в плоскости a. Верно ли что прямая m параллельна плоскости b.
4)верно ли что линия пересечения двух плоскастей параллельна одной из этих плоскостей. 5) Верно ли что любые четыре точки лежат в одной плоскости?
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).
Таким же найдем координаты вектора ВА:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
М = ВС / 2 = (Сx + Bx; Сy + By) / 2 = ((Сx + Bx) / 2; (Сy + By) / 2) = ((5 + 3) / 2; (-2 + 6) / 2) = (8 / 2; 4 / 2) = (4; 2).
Для вычисления длины отрезка воспользуемся формулой вычисления расстояния между двумя точками A (xa; ya) и B (xb; yb):
AB = √(( xb - xa)^2 + (yb - ya)^2).
Подставим значения точки А (1; -2) и М (4; 2) в формулу:
AM = √((4 - 1)^2 + (2 - (-2))^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5.
ответ: координаты вектора АС (4; 0), вектора ВА (-2; -8), координаты точки М (4; 2), длина отрезка АМ = 5.
Объяснение:
1. По катету и гипотенузе (PAD=DCB)
2. По двум катетам (MKT=NKT)
3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)
4. По гипотенузе и острому углу (ERF=ESF)
5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)
6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)
7. прости, не знаю
8. ...
9. По катету и стороне (не уверена) (ADE=BFM)
10. По двум катетам (ADB=CBD)
Объяснение:
в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.
в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.