АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Пусть SABC - правильная треугольная пирамида с вершиной S. В оновании данной пирамиды лежит правильный (равносторонний) треугольник ABC. Высота пирамиды SO опущена в центр основания - центр треугольника ABC, который также является центром описанной окружности с радиусом R. Расстояние от любой вершины треугольника ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3 Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника. h (ABC) составляет 3/4 высоты пирамиды (SO) h(АBC) = 3/4 * SO SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3 Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты. Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO
2*a√3/3 tg(SAO) = = 2 a√3/3
что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Расстояние от любой вершины треугольника ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3
Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника.
h (ABC) составляет 3/4 высоты пирамиды (SO)
h(АBC) = 3/4 * SO
SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3
Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты.
Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO
2*a√3/3
tg(SAO) = = 2
a√3/3
что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует