1. на прямой a даны две точки в и с. найти место точек касания окружностей, одна из которых касается прямой a в точке в, а другая касается прямой a в точке с. 2. построить общую внутреннюю касательную к двум непересекающимся окружностям разных радиусов с центрами в точках о1 и о2 . решите с рисунком
2одну
3 часть прямой с двух сторон ограниченная точками
4часть прямой ограниченная с одной стороны точкой. Либо двумя большими буквами, либо одной маленькой
5два луча исходящие из одной точки. вершина их общее начало, сторона это сами лучи
6обе его стороны лежат на одной прямой
7имеют одинаковую форму и размеры
8 наложить один на другой, чтобы один конец совпал с другим
9 делит его пополам
10 наложить, чтобы одна сторона совмеситлась с другой, а остальные в одну сторону
11 делит угол пополам
12сложить их
13линейка
14сколько градусов он содержит
15сложить их
16меньше 90°, равен 90°, больше 90 но меньше 180°
17хз
18 имеют одну общую сторону,180
19 в точке пересечения образуются прямые углы
20 прямые могут пересечься только в одной точке
21экер,теодолит
Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.