1) Точка М является точкой пересечения продолжения боковых сторон трапеции AB и CD. Образовавшиеся при этом треугольники ВМС и АDM подобны, т.к. ВС║АD - как основания трапеции, а площадь трапеции ABCD, которую необходимо найти, равна разности площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС
2) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия равен:
k = 3 : 5 = 0,6
Квадрат коэффициента подобия:
k = 0,6² = 0,36
3) Следовательно, площадь треугольника ВМС составляет 0,36 площади треугольника АDM и составляет:
SΔВМС = 50 · 0,36 = 18 см²
4) Находим площадь трапеции как разность площадей подобных треугольников:
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
32 см².
Объяснение:
1) Точка М является точкой пересечения продолжения боковых сторон трапеции AB и CD. Образовавшиеся при этом треугольники ВМС и АDM подобны, т.к. ВС║АD - как основания трапеции, а площадь трапеции ABCD, которую необходимо найти, равна разности площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС
2) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия равен:
k = 3 : 5 = 0,6
Квадрат коэффициента подобия:
k = 0,6² = 0,36
3) Следовательно, площадь треугольника ВМС составляет 0,36 площади треугольника АDM и составляет:
SΔВМС = 50 · 0,36 = 18 см²
4) Находим площадь трапеции как разность площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС = 50 - 18 = 32 см².
ответ: 32 см².
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.