Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
1. если в 4-угольник можно вписать окружность, следовательно,
суммы длин противоположных сторон равны)))
т.е. сумма боковых сторон = сумме оснований = 24см/2 = 12
средняя линия трапеции = полусумме длин оснований = 12/2 = 6 (также является диаметром впис окруж)
2.считаем, что вы умеете строить параллельные прямые, перпендикуляры, откладывать отрезки - элементарные построения.
Также считаем, что Вы умеете строить касательные к окружности - задача не такая сложная, но также и касательную (разную) к двум окружностям - это задача сложнее намного, но нужно уметь.
Если вы это умеете - смотрим решение в файле. Если нет - то и решение вам не нужно.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Объяснение:
1. если в 4-угольник можно вписать окружность, следовательно,
суммы длин противоположных сторон равны)))
т.е. сумма боковых сторон = сумме оснований = 24см/2 = 12
средняя линия трапеции = полусумме длин оснований = 12/2 = 6 (также является диаметром впис окруж)
2.считаем, что вы умеете строить параллельные прямые, перпендикуляры, откладывать отрезки - элементарные построения.
Также считаем, что Вы умеете строить касательные к окружности - задача не такая сложная, но также и касательную (разную) к двум окружностям - это задача сложнее намного, но нужно уметь.
Если вы это умеете - смотрим решение в файле. Если нет - то и решение вам не нужно.