№1__на стороне ав и вс взяты две точки d и e соответственно . из этих точек перпендикулярны к прямой ас , pk=ke меньше углаadk= углу pek доказать : авс = вс №2__дано : в треуг.авс и а1в1с1 , высоты bd = b1d1 , причем угол с больше угла с1 , ad=a1d1 , докажите : что угол а=а1 заранее
Можно найти только УГЛЫ треугольника АВС.
Решение на всякий случай.
Биссектриса BD в ABC пересекает сторону AC под углом 100°, тогда если <ADB =100°, то <CDB = 80°, как смежный с ним.
В треугольнике DBC BD=BC (дано) => углы <BDC = CDВ = 80° как углы при основании равнобедренного треугольника.
<DBC = 180° - 2*80° = 20° по сумме внутренних углов треугольника.
А так как BD - биссектриса, то угол В = 40°.
<A = 180° - 80° - 40° = 60° (по сумме внутренних углов треугольника).
ответ: <A=60°, <B=40° и <C=80°.
ответ: Рисунок не очень качественный, цифры плохо виды, так что сверяйте, надеюсь, что я правильно поняла
На рисунке "Г", т.к. сумма внутренних углов 180°
125+55=180°
Объяснение:
Не подходят:
"А", т.к. смежный с углом 135 угол равен 180-135=45°, а 45+115=160°, а не 180° (если бы были параллельными сумма внутренних односторонних углов равна была б 180°)
"Б" - 122+48=170°, а это внутренние односторонние углы и их сумма не равна 180°
"В" - при пересечении двух параллельных секущей образуются накрестлежащие углы, пара которых как раз изображена на рисунке. Если прямые были бы параллельными они были бы равны, но тут они разной градусной меры
"Д" - угол смежный с углом 154° равен:180-154=26° и этот угол накрестлежащий со вторым углом на рисунке, равным 16°. Так ка эти углы не равны, прямые не параллельны (накрестлежащие углы, образованные при пересечении двух параллельных прямых секущей всегда равны)