1.Найдите внутренние односторонние углы, образованные при пересечении двух параллельных прямых секущей, если их отношение равно 11 : 19.
2.Две параллельные прямые AB и CD пересекает секущая MN (M ∈ AB, N ∈ CD), ∠ BMN = 75°. При каком значении угла MND прямые AB и CD могут быть параллельными, если известно, что угол MND – тупой?
3.Пусть A и B точки пересечения, соответственно, параллельных прямых a и b секущей c. Биссектриса одного из углов с вершиной в точке B пересекает прямую a в точке C. Найти AC, если AB = 2.
AC = 1
AC = 2
AC = 3
AC = 4
4.Один из внутренних односторонних углов, образованных при пересечении двух параллельных прямых третьей прямой в 5 раз больше другого. Чему равны эти углы?
а)170°
б)90°
в)150°
г)30°
д)10°
е)110°
5.Два угла имеют соответственно параллельные стороны. Один из них на 24° больше другого. Найти эти углы.
90° и 66°
100° и 76°
102° и 78°
6.Разность двух внешних односторонних углов при параллельных прямых равна α. Найдите эти углы ДО ЗАВТРА!!
№1. Из условия видим, что диагональ BD делит ромб на два правильные треугольника ABD и CBD. Можно по теоремме пифагора найти высоту этих треуг-ков, а затем их площадь, но для равностороннего треуг-ка есть такая формула площади:
S=(√3/4)*a^2
S=√3/4*10=2√3/5=0,7см^2
№2. Сторона правильного шестиугольника равна радиусу описанной около него окружности, поэтому r=6см.
Длина окр-ти l=2Пr=2*3,14*6=37,68см
S=Пr^2=3,14*36=113,04см^2
№3. Что-то не понял условие. Дан прямоугольный треугольник и найти радиус вписанного треугольника. Радиус вписанной окружности нужно найти.
r=S/p, где р-полупериметр. Так как острый угол 45, то катеты равны.
Пусть один катет равен х, тогда
x^2+x^2=100
2x^2=100
x^2=50
x=√50=5√2см
S=1/2*5√2*10=25√2см^2
p=(10+5√2+5√2)/2=5+5√2см
r=25√2/(5+5√2)=5√2/(1+√2)=2,93см
А1 Если точка лежит в плоскости YOZ, то x=0;
ответ: а) A(0; 1; 1).
A2 Координаты середины отрезка равны полусумме координат концов отрезка:
x(М) = (x(A) + x(В))/2; ⇒ x(B)=2· x(M) - x(A);
x(B) = 2 · (- 2) - 1 = - 5
y(B) = 2 · 4 - 3 = 5
z(B) = 2 · 5 - (- 2) = 12
ответ: a) B(- 5; 5; 12).
A3 B(6; 3; 6) C(- 2; 5; 2)
Если АМ медиана, то M - середина ВС.
x(M) = (6 - 2)/2 = 2; y(M) = (3 + 5)/2 = 4; z(M) = (6 + 2)/2 = 4
M(2; 4; 4); A(1; 2; 3)
AM² = (2 - 1)² + (4 - 2)² + (4 - 3)² = 1 + 4 + 1 = 6;
AM = √6
ответ: а) √6
А4 Скалярное произведение равно сумме произведений соответствующих координат:
↑a · ↑b = 1 · (- 1) + (- 1) · 1 + 2 · 1 = - 1 - 1 + 2 = 0
ответ: б) 0.
А5 При симметрии относительно оси Ох меняют знак координаты у и z:
А(0; 1; 2) → A₁ (0; - 1; - 2),
B(3; - 1; 4) → B₁ (3; 1; - 4),
C(- 1; 0; - 2) → C₁ (- 1; 0; 2).
B1 Неполное условие. Должно быть так:
Диагональ осевого сечения цилиндра равна √81 см, а радиус основания – 3 см. Найти высоту цилиндра.
Осевое сечение цилиндра - прямоугольник, одна сторона которого (АВ) равна диаметру основания, а другая - образующая (она же высота).
Из прямоугольного треугольника АВВ₁ по теореме Пифагора:
ВВ₁ = √(АВ₁² - АВ²) = √(81 - 36) = √45 = 3√5 см
ответ: 3√5 см
B2 ΔSOA прямоугольный,
R = OA = SA · cos30° = 8 · cos30° = 8 √3/2 = 4√3 см
h = SO = SA · sin30° = 8 · 1/2 = 4 см
Sasb = 1/2 AB · SO = 1/2 · 2R · h = R · h = 4√3 · 4 = 16√3 см²
С1 Если призма вписана в шар, то ее основания вписаны в равные круги - параллельные сечения шара, а центр шара - точка О - лежит на середине отрезка КК₁, соединяющего центры этих кругов.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению. ОК перпендикулярен плоскости АВС. Тогда КК₁ - высота призмы.
ОА - радиус шара, ОА = 4 см,
КА - радиус сечения, или радиус окружности, описанной около правильного треугольника АВС (призма правильная), тогда
КА = а√3/3, где а - ребро осноавния,
КА = 6√3/3 = 2√3 см
Из прямоугольного треугольника АОК по теореме Пифагора:
ОК = √(ОА² - КА²) = √(4² - (2√3)²) = √(16 - 12) = √4 = 2 см
КК₁ = 2ОК = 4 см
ответ: 4 см