1) найти площадь поверхности конуса , если радиус основания R Равен 4 и образующая L равно 7
2) найти объём конуса если R= 3 ,L = 6
3) найти объём цилиндра , если радиус основания 5 , высота 8
4) найти площадь прямоугольного параллелепипеда если а= 4 ,b= 3 ,C= 6
Следовательно АБ:АД=БО:БЦ (количественно - в 2 раза больше/меньше)
Найти: площадь треугольника АБД.
Сперва найдем длину стороны (правильного) пятиуголника. а= =
Найдем апофему (перпендикуляр к стороне от центра)
h=(S*2)/5*a=60/20,7=2,9
По теореме пифагора найдем расстояние от центра до любой точки.
АО=r= sqrt(h²*(a/2)²)=
Зная высоту треугольника АБД (апофема + расстояние до точки/радиус описанной окружности) найдем площадь треугольника.
Sabd= (a*H)/2=4,17*(2,9+3,57)=27cm²
p.s. Задача выполнена с учетом, что точка Д лежит напротив отрезка AB,а не рядом.
удачи:))
1) • тр. АВС - прямоугольный, угол С = 90°
• Применим теорему Пифагора:
Квадрат гипотенузы прямоугольного треугольника равен сумме квадртов катетов.
ОТВЕТ: 5
2) • тр. MNK - прямоугольный, угол N = 90°
• По теореме Пифагора:
ОТВЕТ: 3\/17
5) • тр. АВС - равнобедренный, АВ = ВС ,
BD - высота, опущенная на сторону АС
• По свойству равнобедренного треугольника:
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой, и биссектрисой.
Значит, AD = DC = ( 1/2 ) • AC = ( 1/2 ) • 16 = 8
• Рассмотрим тр. BDC (угол BDC = 90°):
По теореме Пифагора:
ОТВЕТ: 15
6) • тр. RMN - правильный, то есть равносторонний треугольник => RN = NM = RM = 6
• Любая высота, проведёная в равностороннем треугольнике, является и медианой, и биссектрисой:
NK = KM = ( 1/2 ) • NM = ( 1/2 ) • 6 = 3
• Рассмотрим тр. RNK (угол RKN = 90°):
По теореме Пифагора:
ОТВЕТ: 3\/3 .
douwdek0 и 7 других пользователей посчитали ответ полезным!
5
5,0
(3 оценки)
Войди чтобы добавить комментарий
ответ
3,0/5
1
Удачник66
главный мозг
14.3 тыс. ответов
18 млн пользователей, получивших
1) x^2 = 3^2 + 4^2 = 9 + 16 = 25; x = 5
2) x^2 = 13^2 - 4^2 = 169 - 16 = 155; x = V155
Здесь V это корень, просто у меня в телефоне значка корня нет.
Если бы катет был 5, то х = 12.
5) x^2 = 17^2 - (16/2)^2 = 17^2 - 8^2 = 289 - 64 = 225; x = 15
6) x^2 = 6^2 - (6/2)^2 = 6^2 - 3^2 = 36 - 9 = 27; x = V27 = 3*V3
cliy4h и 2 д