1. Основа рівнобедреного трикутника = 16 см, а бічна сторона – 17 см. Знайдіть синус, косинус, тангенс і котангенс кута при основі трикутника. 2. Із точки, що знаходиться на відстані 20 см від прямої, проведено до неї дві похилі, які утворюють із прямою кути 60º і 45º. Знайдіть відстань між основами похилих. Скільки розв’язків має задача ?
3. У рівнобічній трапеції ABCD основи AD і BC дорівнюють відповідно 18 см і 12 см, а бічна сторона утворює з основою AD кут 30º. Знайдіть діагональ трапеції.
1. 60
2. АВ = 70°, АС = ВС = 145°.
Объяснение:
1.
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
2 Задача
Если О - центр окружности, то угол АОВ - центральный.
Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.
Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.