1 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 см и 12 см, высота призмы равна 8 см. Найдите площадь ее
поверхности.
2 Сторона основания правильной четырёхугольной призмы равна 8 см, а
диагональ призмы образует с плоскостью основания угол 45°. Найдите:
а) диагональ призмы;
б) угол между диагональю призмы и плоскостью боковой грани;
в) площадь боковой поверхности призмы.
SA = SB = SC = 2√13
SH = 5 - апофема (высота боковой грани).
SO - высота.
ОС - проекция наклонной SC на плоскость основания, тогда ∠SCO - угол, который образует боковое ребро с основанием пирамиды. Обозначим его α.
Найти надо ctgα.
ΔSHB: по теореме Пифагора
НВ = √(SB² - SH²) = √((2√13)² - 5²) = √(52 - 25) = √27 = 3√3
Тогда сторона основания a = AB = BC = AC = 6√3
ОС - радиус окружности, описанной около основания.
ОС = а√3/3 = 6√3·√3/3 = 6
ΔSOC: по теореме Пифагора
SO = √(SC² - OC²) = √(52 - 36) =√16 = 4
ctgα = OC/SO = 6/4= 3/2
Это значит, что прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы). Сумма двух острых углов прямоугольного треугольника равна прямому углу. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника. Другая особенность прямоугольного треугольника состоит в