1. Основи AD і BC трапеції ABCD дорівнюють 12 см і 5 см відповідно. Продовження бічних сторін АВ і СD трапеції перетинаються в точці E. Відомо, що СD – СЕ = 4 см. Знайдіть сторону CD трапеції.
на рус:
1. Основания AD и BC трапеции ABCD равны 12 см и 5 см соответственно. Продолжение боковых сторон АВ и СD трапеции пересекаются в точке E. Известно, что СD – СЕ = 4 см. Найдите сторону CD трапеции.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
AK=3.
Объяснение:
Українською
1. Використаємо узагальнену теорему Фалеса про пропорційні відрізки.
MK||BE||CD(з умови) Тоді:
AM/MB = AK/KE.
Оскільки з умови задачі сказано, що M - середина сторони AB, то AM=MB.
Звідси випливає, що AK = KE.
2. Доведемо, що фігура BCDE - паралелограм.
BC||ED(якщо прямі паралельні(як основи трапеції) то і відрізки, які належать прямим також паралельні)
BE||CD(умова). BCDE - паралелограм(за ознакою).
BC = DE = 20(за властивістю паралелограма)
3. AD = 2*AK+ED
AK = (AD-ED)/2 = (26-20)/2 = 3.
На русском
1. Используем обобщенную теорему Фалеса о пропорциональных отрезках.
MK||BE||CD(из условия) Тогда:
AM/MB = АК/КЕ.
Поскольку из условия задачи сказано, что M – середина стороны AB, то AM=MB.
Отсюда следует, что AK=KE.
2. Докажем, что фигура BCDE – параллелограмм.
BC||ED(если прямые параллельные(как основания трапеции) то и отрезки, принадлежащие прямым также параллельные)
BE||CD(условие). BCDE – параллелограмм(по признаку).
BC = DE = 20(по свойству параллелограмма)
3. AD = 2*AK+ED
AK=(AD-ED)/2=(26-20)/2=3.