для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см
Объяснение:
Прямоугольник АВСD
BE = EF = FC
AG = GD
-------------------------
Пусть длинные стороны прямоугольника равны а, а короткие - b.
ВС = AD = a
FD = СВ = b
Тогда площадь прямоугольника
ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)
Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия
k = a/3 : a/2 = 2/3
Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна
ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .
Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда коэффициент подобия
k = 2/3 : a/2 = 4/3
Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна
Площадь ΔGHK
для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см
Объяснение:
Прямоугольник АВСD
BE = EF = FC
AG = GD
-------------------------
-------------------------
Пусть длинные стороны прямоугольника равны а, а короткие - b.
ВС = AD = a
FD = СВ = b
Тогда площадь прямоугольника
ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)
Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия
k = a/3 : a/2 = 2/3
Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна
ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .
Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда коэффициент подобия
k = 2/3 : a/2 = 4/3
Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна
Площадь ΔGHK