1 Отрезок AF - биссектриса прямоугольного треугольни- ка ABC с прямым углом С, а отрезок FO — перпендику- ляр, проведенный из точки F к стороне AB. Вычислите длину отрезка А0, если AC = 4 см.
Если боковые ребра пирамиды равнонаклонены, т.е. угол наклона к основанию всех ребер одинаков, то её высота проходит через центр описанной около основания окружности.
Пусть в пирамиде МАВС МО - высота, АВ=40 см, ВС=20 см, АС=30 см. АО=ВО=СО=R.
Полупериметр ∆ АВС=45
Найденная по формуле Герона Ѕ(АВС)=√(45•5•15•25)=75√15.
Формула радиуса описанной около треугольника окружности R=a•b•c/4S, где a,b,c - стороны треугольника, S- его площадь.
R=(20•30•40):(4•75√15)=80/√15
Формула объема пирамиды V=h•S/3 ⇒ 2000=(h•75√15):3. Решив уравнение, получим h=80/√15
В прямоугольном треугольнике АSО катеты АО=SО=80√15. ⇒ tg(SAO)=1. Угол SAO=45°
Треугольник АВС равнобедренный, значит BD биссектриса, медиана и высота, т.е. AD = DC и ΔABD прямоугольный, а DE - его высота.
По свойству пропорциональных отрезков в прямоугольном треугольнике, квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу:
BD² = BE · AB
AD² = AE · AB
Пусть х - коэффициент пропорциональности, тогда
АЕ = 4х, ВЕ = 9х, а АВ = 13х.
BD = √(9х · 13х) = 3х√13
AD = √(4x · 13x) = 2x√13
AC = 2AD = 4x√13.
Так как BD + AC = 14, то
3x√13 + 4x√13 = 14
7x√13 = 14
x = 2/√13 = 2√13 / 13 см
AB = BC = 13x = 2√13 см
AC = 4x√13 = 4 · 2√13/13 · √13 = 8 см
Pabc = AB + BC + AC = 2AB + AC = 2 · 2√13 + 8 = 4(√13 + 2) см
ответ: 45°
Объяснение:
Если боковые ребра пирамиды равнонаклонены, т.е. угол наклона к основанию всех ребер одинаков, то её высота проходит через центр описанной около основания окружности.
Пусть в пирамиде МАВС МО - высота, АВ=40 см, ВС=20 см, АС=30 см. АО=ВО=СО=R.
Полупериметр ∆ АВС=45
Найденная по формуле Герона Ѕ(АВС)=√(45•5•15•25)=75√15.
Формула радиуса описанной около треугольника окружности R=a•b•c/4S, где a,b,c - стороны треугольника, S- его площадь.
R=(20•30•40):(4•75√15)=80/√15
Формула объема пирамиды V=h•S/3 ⇒ 2000=(h•75√15):3. Решив уравнение, получим h=80/√15
В прямоугольном треугольнике АSО катеты АО=SО=80√15. ⇒ tg(SAO)=1. Угол SAO=45°
Треугольник АВС равнобедренный, значит BD биссектриса, медиана и высота, т.е. AD = DC и ΔABD прямоугольный, а DE - его высота.
По свойству пропорциональных отрезков в прямоугольном треугольнике, квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу:
BD² = BE · AB
AD² = AE · AB
Пусть х - коэффициент пропорциональности, тогда
АЕ = 4х, ВЕ = 9х, а АВ = 13х.
BD = √(9х · 13х) = 3х√13
AD = √(4x · 13x) = 2x√13
AC = 2AD = 4x√13.
Так как BD + AC = 14, то
3x√13 + 4x√13 = 14
7x√13 = 14
x = 2/√13 = 2√13 / 13 см
AB = BC = 13x = 2√13 см
AC = 4x√13 = 4 · 2√13/13 · √13 = 8 см
Pabc = AB + BC + AC = 2AB + AC = 2 · 2√13 + 8 = 4(√13 + 2) см