Касательные AN и AM равны и образуют с радиусами ON и OM соответственно прямые углы. Т.е. AN перпендикулярна ON, и AM перпендикулярна OM. Касательными и радиусами образуется четырехугольник OMAN. Сумма углов = 360 градусов. ∠MAN = 360 - ∠MON - ∠ANO - ∠AMO = 360-120-90-90=60 градусов. Рассмотрим треугольники ΔANO и ΔAMO - они равны по двум сторонам(AN=AM, MO=NO) и углу между ними (∠ANO=∠AMO=90) эти треугольники прямоугольные. Диагональ делит OMAN пополам. ∠MAO=∠NAO=30. Катеты лежащие напротив угла в 30 градусов равны половине гипотенузы: OM=ON=OA:2=12:2=6см Используем т.Пифагора, чтобы найти AM и AN.
Пусть отрезки AB/A1B1 = BC/B1C1 = CA/C1A1 = k. Для построения AB = P1Q1, BC = P2Q2, AC = P3Q3. Начерти произвольные отрезки P1Q1, P2Q2, P3Q3. а) Раздели отрезки на две равные части и построй треугольник по одной из каждой получившейся части. Чтобы разделить отрезки на две равные части, проведи окружность радиуса данного отрезка с центрами в концам этого отрезка. Точки пересечения окружностей соедини, получишь серединный перпендикуляр. б) На прямой построй данные отрезки, а затем через их концы построй такие же отрезки (чтобы получились отрезки, в два раза большие данных). в) То же самое, что и во втором, только нужно, чтобы получившиеся отрезки были в три раза больше данных. г) Построй сначала один из отрезков. Пусть P1Q1. Дострой его до угла. Обозначим угол S1P1Q1. Затем с циркуля отмерим на второй стороне угла (на S1P1) три равных отрезка любой длины. Затем через конец последнего отрезка провели прямую к концу данного отрезку P1Q1. А затем через концы верхних отрезков провели прямые, параллельные Q1S4. По теореме Фалеса отрезки S1S2 = S2S3 = S3S4 и на отрезке P1Q1 пямые S2P2, S3P3 и S4Q1 отсекут три равных отрезка P1P2, P2P3, P3Q3. Таким образом, мы разделили отрезки на три равных части. Дальше делаешь также и для других двух сторон м строишь треугольник, которые получится в 3 раза меньше данного.
Касательными и радиусами образуется четырехугольник OMAN. Сумма углов = 360 градусов.
∠MAN = 360 - ∠MON - ∠ANO - ∠AMO = 360-120-90-90=60 градусов.
Рассмотрим треугольники ΔANO и ΔAMO - они равны по двум сторонам(AN=AM, MO=NO) и углу между ними (∠ANO=∠AMO=90) эти треугольники прямоугольные.
Диагональ делит OMAN пополам. ∠MAO=∠NAO=30.
Катеты лежащие напротив угла в 30 градусов равны половине гипотенузы: OM=ON=OA:2=12:2=6см
Используем т.Пифагора, чтобы найти AM и AN.
ответ: AM=AN=см