1) построить линию пересечения плоскостей общего положения, если плоскости задана координатами больших треугольников
2)определить видемость сторон треугольников
3)определить натуральную велечину треугольника abc, методом переменных плоскостей проекции
4) определить угол наклона плоскости abc к горизонтально проецирующей проекции
a(150 55 65) b(50 110 90) c(40 60 10)
d(110 95 40) e(90 30 100) f(15 80 70)
1. Внешний угол при вершине С треугольника ABC равен 140°, а внутренний угол при вершине B-70°. Укажите наименьшую сторону треугольника.
2. В треугольнике ABC AB=3 см, BC=10 см. Почему равен AC?
Объяснение:
1)ΔАВС ,∠В=70°, А-С-К, ∠ВСК=140° . Указать меньшую сторону.
Внешний угол ∠ВСК=∠А+∠В ⇒ ∠А=140°-70°=70°.
∠АСВ=180°-140°=40°.
В треугольнике против меньшего угла лежит меньшая сторона ⇒ меньший угол ∠АСВ, значит меньшая сторона АВ.
2)Пусть сторона АС=х
Длина любой стороны треугольника всегда меньше суммы длин двух его других сторон ⇒
х+з>10 или х>7
х+10>3 или х>-7 можно отбросить ,т.к. х-положительно
3+10>х или 13>х или х<13.
Т.о. 7<x<13
Согласно условию \tt \angle P=90^\circ∠P=90
∘
, значит \tt \angle E=90^\circ-\angle K=90^\circ-60^\circ=30^\circ∠E=90
∘
−∠K=90
∘
−60
∘
=30
∘
Рассмотрим теперь прямоугольный треугольник MPK:
\tt \angle PKM=90^\circ-\angle PMK=90^\circ-60^\circ=30^\circ∠PKM=90
∘
−∠PMK=90
∘
−60
∘
=30
∘
Из треугольника MKE: \tt \angle MKE=60^\circ-30^\circ=30^\circ∠MKE=60
∘
−30
∘
=30
∘
и поскольку углы при основании равны, то треугольник MKE - равнобедренный, ME = MK = 16 см.
Вернемся теперь снова к прямоугольному треугольнику MPK: против угла 30° катет в два раза меньше гипотенузы, то есть: PM = MK/2=8 см.
ответ: 8 см.